Method and Formulas

The purpose of this part is to provide exact definition of quantities used in ISOLA, such as the elementary seismograms, correlations, variance reduction, condition number, the DC, CLVD and ISO percentage, etc. 

Forward and inverse problem

We consider a point source of seismic waves of a given position and origin time, and express displacement u by means of moment tensor M and spatial derivative of Green’s tensor G (Aki and Richards, 2002): 
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where * stands for temporal convolution, and p, q denote three Cartesian coordinates. The moment tensor can be expressed in the form of a linear combination of six elementary (dimensionless) tensors Mi :
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                (2)
It represents a convenient parametrization because in this way the source is characterized by six scalar coefficients ai. 

We use the elementary tensors implemented in the discrete-wavenumber code AXITRA (Bouchon, 1981, Countant, 1989):
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The M1 to M5 tensors represent five double-couple (DC) focal mechanisms, while M6 is a purely isotropic source. 

Remark: The six elementary tensors used here to aid the MT inversion should not be confused with various tensors used in the literature to decompose the MT for purposes of its physical interpretation, for example, to decompose the MT into the isotropic part and three DC tensors (e.g., Figure 3 of Julian 1998, or p. 42 of Jost and Herrmann, 1989). The interpretation of the MT used in ISOLA is defined later in the sub-section Decomposition of MT. 

Combining (2), (3) we arrive at

M
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where ai (with the dimension of moment) are coefficients of the linear combination in equation (2).  Note that the trace of the moment tensor is tr(M) = 3 a6. The scalar seismic moment is defined as the Euclidian norm of the MT (Silver and Jordan, 1982).
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    (5)
Combining (1) and (2) yields:  
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and then: 
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where Ej denotes the j-th elementary seismogram corresponding to the j-th elementary moment tensor. Here we assume that the moment temporal function is known (e.g., assumed in the form of a step function which is a good approximation at frequencies below the corner frequency of the event). In matrix notation
u = E a .           

   



              (8a)
The (formally) over-determined linear inverse problem (8a) for a can be solved by the least-squares method 

aopt = (ETE)-1 ETu  




          
              (8b)

where T and -1  stand for matrix transposition and inversion. This least-squares formulation is standard (e.g., Kikuchi and Kanamori, 1991), but the elementary moment tensors (3), used in ISOLA, differ from the referenced paper. The difference is formal and has no effect on the solution. Technically, the processing of the complete observed seismograms u, the calculation of the elementary seismograms E for a given time function, as well as the inversion of aopt are performed using ISOLA software (Sokos and Zahradník, 2008). No artificial temporal adjustment to improve the fit between the observed and synthetic seismograms is introduced (Zahradník et al., 2008). If assuming that, in general, all six a-coefficients are non-zero we speak about the full-MT inversion; the deviatoric inversion is the case when assuming a6 = 0 (vanishing isotropic component).   
In case of an unknown source position and time, which are related to the displacement in a non-linear way, we seek these additional parameters (centroid position and time, hidden in E) by grid search. In other words, we still solve linear problem (8a) for a, but repeatedly with different E. 

The grid search maximizes the correlation between the observed (u) and synthetic (s) seismograms
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where 
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 and summation is over components and stations. 
The match between real and best-fitting seismograms is measured by the L2-norm misfit 
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and/or by means of the global variance reduction:
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If synthetics s are found by least-squares misfit minimization, i.e.

s=E aopt,




      

            (12a)

where aopt is given by (8b): then
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and the correlation is related with the variance reduction through the simple formula 


[image: image18.wmf]VR

Corr

=

2

.





              (13)

Decomposition of MT 

As explained in the Introduction, there exist several ways of interpreting the resulting MT, i.e. of decomposing the MT into components with a simple meaning. We follow the traditional decomposition M = MISO+ MDEVIA, where MISO and MDEVIA are the isotropic and deviatoric parts, respectively. Furthermore, MDEVIA = MDC + MCLVD (e.g., Julian, 1998, p. 530). The eigenvalues of MDEVIA define an important and commonly used parameter ranging from 0 (pure DC) to +/- 0.5 (pure CLVD):  = -e1/abs(e2), where e1 and e2  are the eigenvalues of MDEVIA  with the  minimum and maximum absolute values, respectively. The relative size of the individual components is expressed by ‚percentages‘. Their definition has not been standardized in the literature; in ISOLA we use the percentages defined in Eq. (8) of Vavryčuk (2001): ISO = 100 [tr(M)/3]/abs(e*), where e* is the eigenvalue of the full moment tensor M, which has the maximum absolute value, CLVD =2abs(ISO), DC=100 - abs(ISO) - abs(CLVD). Alternatively, we can measure the isotropic part of MT also directly by means of the a6 coefficient because, according to (4), a6 = tr(M)/3.
Uuncertainty in  linear case

First we assume that the centroid depth H and time O are known (fixed), the MT inverse problem has 6 parameters and is linear, thus the uncertainty analysis is straightforward. For theoretical reasons, we have to introduce a standard deviation u of the data. Its squared value is the data variance. We assume the simplest possible case that u has the same value for all the data components and is independent of time. As extensively discussed in Zahradnik and Custódio (2012), it is not easy to estimate the true value of u, however, in problems where  we investigate the uncertainty in a relative sense only, we just prescribe a reasonable value of u , and keep it constant in all the compared models. 
We then obtain  
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 (14)
where Ẽ is the design matrix (Press et al., 1997). The design matrix depends on the position of the source and stations, on the crustal model and the considered frequency range, but does not depend on the waveforms. Therefore, we can assess the theoretical parameter uncertainty even without seismograms. Any single parameter ai then has a 1D Gaussian probability density function (pdf). For example, if a1 to a5 take their optimal values, for a6 we have
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whose form is independent of a particular value of a6opt, and the standard deviation a6 is given by the  explicit formula (Press et al., 1997, section  15.4).
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Here V6i is the 6th component of the i-th singular vector of the design matrix Ẽ, and wi is its i-th singular value. In practice, we do not need the singular decomposition of matrix Ẽ, since the singular vectors V of Ẽ are simply eigenvectors of matrix ETE, and the singular values of Ẽ can be calculated from the eigenvalues i of ETE: 
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The condition number CN is defined by
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CN is useful in judging, at least in a relative sense, how well/ill posed is the inverse problem; small singular values (large CN) indicate an unstable solution.   

Now consider 2, i.e. the theoretical misfit between data and synthetics, normalized by the data variance. The surfaces of constant theoretical misfit 2 (a 6D ellipsoid) are given by (Press et al., 1997 section 15.6.)  

w(V·a)2+...+w62(V(6)·a)2




  (19)
where a is the radius vector connecting the center of the ellipsoid (i.e. the assumed or retrieved MT solution) and a point in parameter space. The points inside the 6D ellipsoid 2 ≤ 1 can be found by numerically grid searching the 6D parameter space in limits given by the standard deviations of the individual parameters. Then the moment tensors corresponding to these points inside the error ellipsoid are represented by the strike, dip and rake angles, and their histograms are constructed to guess the MT uncertainty. For algorithmic details, see the Appendix of Zahradník and Custódio (2012). Extension to the non-linear case (when the centroid position and time belong to the model parameters) can be found in Krizova et al. (2012).  
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