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ABSTRACT

Algorithms that deal with the automatic S-onset time identifi-
cation problem are a topic of ongoing research. Modern dense
seismic networks used for earthquake location, seismic tomog-
raphy investigations, source studies, early warning, etc., demand
accurate automatic S-wave picking. Most of the techniques that
have been proposed up to now are mainly based on the polar-
ization features of the seismic waves. We propose a new time
domain method for the automatic determination of the S-phase
arrival onsets, and present its implementation on local earth-
quake data. Eigenvalue analysis takes place over small time in-
tervals, and the maximum eigenvalue which is obtained on each
step is retained for further processing. In this way, a time series

of maximum eigenvalues is formed, which serves as a character-
istic function. We obtain a first S-phase arrival time estimation
by applying the kurtosis criterion on the derived characteristic
function. Furthermore, a multiwindow approach combined with
an energy-based weighting scheme is also applied, to reduce the
algorithm’s dependence on the moving window’s length and
provide a weighted S-phase onset. Automatic picks were com-
pared against manual reference picks, resulting in mean residual
time of 0.051 s. Moreover, the proposed technique was sub-
jected to a noise robustness test and sustained a good perfor-
mance. The mean residual time remained lower than 0.1 s,
for noise levels between −1 up to 8 dB. The proposed method
is easy to implement, because it is almost parameter free and
demands low computational resources.

INTRODUCTION

A large number of algorithms have been proposed and used on
seismic networks for phase identification. The accurate determina-
tion of compressional and transversal seismic waves is important for
earthquake location and focal mechanism determination, but is also
essential for other applications such as passive seismic tomography
investigations (Tselentis et al., 2011b). Regarding the event detec-
tion as well as P-phase identification, several techniques exist in-
volving energy criteria (Allen, 1978; Baer and Kradolfer, 1987),
polarization analysis tests (Montalbetti and Kanasewich, 1970;
Vidale, 1986; Magotra et al., 1987; Ruud and Husebye, 1992),
fuzzy logic tests (Chu and Mendel, 1994), artificial neural networks
(Dai and MacBeth, 1995), higher-order statistics (Saragiotis et al.,
2002), wavelet analysis (Anant and Dowla, 1997), etc.
In contrast to P-onset time estimation, algorithms that deal with

S-phase arrival are mainly based on polarization attributes of the

seismic signal, and their development is a topic of ongoing research.
The identification of phase-arrival times is traditionally done by
experienced seismologists, but due to the character of the later-
arriving shear waves, even manual S-wave picking is often uncer-
tain and inconsistent. Moreover the S-onset time-identification
problem can be further complicated due to converted waves,
which can be misinterpreted as the direct S-onset (Sokos,
et al., 2012).
It is well-known that polarization measurements may indicate the

arrival of seismic phases, because highly linear particle motion may
be associated with body wave arrivals. Using 3C data and linear
algebra’s fundamentals, Flinn (1965) designed a time-varying non-
linear filter to enhance particle motion which is rectilinear in a par-
ticular direction in 3D space. The usefulness of such a detector lies
in its ability to separate compressional wave motion from the shear
or surface wave motion, when the distance and azimuth to the seis-
mic source is specified.
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Montalbetti and Kanasewich (1970) modified the time domain
polarization filter originally proposed by Flinn, and used it to in-
crease the signal to noise (S/N) ratio of teleseismic bodywave phases.
A complex polarization filter was proposed by Vidale (1986) as an
extension of the Montalbetti and Kanasewich (1970) scheme, where
the imaginary part of the signal is the Hilbert transform of the real
part. Another time domain technique based on Flinn’s method was
proposed by Jurkevics (1988). He extended Flinn’s work by includ-
ing frequency decomposition and the application to arrays of 3C
sensors.
Cichowicz (1993) combined the significant characteristics of an

S-wave arrival into one characteristic function that consists of a pro-
duct of different polarization filters such as rectilinearity, directivity,
and the ratio between transverse and total energy. Finally, hybrid
methods have also been proposed, by Wang and Teng (1997), Sar-
agiotis et al. (1999), Bai and Kennett (2000), Gentili and Michelini
(2006), Diehl et al. (2009), Nippres et al. (2010), and Küperkoch
et al. (2011), that involve, in addition to polarization analysis, time
series analysis techniques, autoregressive prediction, STA/LTA
detectors, pattern recognition schemes, artificial neural networks,
wavelet analysis, and higher order statistics.
Most of the methods mentioned above are mainly implemented

on data from a single 3C receiver. Numerous techniques, however,
have been developed and used by the industry, using data recorded
by array of receivers. Seismic monitoring with arrays of receivers
provides the opportunity to check consistency of signal detection
across a seismic network of receivers. For example, Fischer
et al. (2007) developed a new method for picking P- and S-waves
at a linear receiver array, which employs polarization properties and
array consistency of the detected phases. Drew et al. (2005) imple-
mented a method to detect and locate events on data recorded by a
vertical array of 3C seismic sensors. According to their method,
event detection is continuously updated and applied to a spatial
map of the probability of microseismicity occurrence. Finally,
one can find the complete state-of-the-art techniques used in the
industry regarding surface, near-surface, and downhole monitoring,
as nicely summarized and presented by Maxwell et al. (2010) and
Duncan and Eisner (2010).
In this paper, we propose an automatic S-wave detector scheme,

based on the statistical processing of a specific characteristic func-
tion that is obtained by eigenvalue analysis and makes no assump-
tions about the polarization of P- and S-waves. It is an almost
parameter-free algorithm, which is straightforward to implement
and demands low computational resources. The proposed method
was developed for use, e.g., in local earthquake tomography or seis-
micity studies. We present its performance on surface seismic data
and on single station, because it can be applied on each station sep-
arately. Although the problem of the implementation of our tech-
nique on arrays of sensors remains to be examined, we believe that
it could be addressed, for example, using methods that introduce
multichannel sparsity concepts (Vera Rodriguez et al., 2012).

THEORY

In the following section, we describe the basic principles of
polarization analysis and explain how the diagonalization of the
data covariance matrix relates to the polarization features of a seis-
mic wave. Moreover a brief introduction to higher order statistics
(HOS) is presented, and their usefulness on seismic phase automatic
picking is also discussed.

Polarization analysis

The problem can be formulated as follows: Given a zero-mean
(3 × 1) data vector ~s in z, n and e space (z ¼ vertical, n ¼
north–south, e ¼ east–west), we need to identify the direction in
which projection y exhibits the maximum variance (Magotra
et al., 1987). This can be written as a dot product

y ¼ ~uT~s ¼ ½u1u2u3�
" sz
sn
se

#
; (1)

where ~u is a unitary vector (k~uk ¼ 1), in the direction of the
source’s azimuth. Vector s is assumed to be zero mean, so for
the mean value and variance of y we can write

E½y� ¼ E½~uT~s� ¼ 0

σ2y ¼ E½y2� ¼ ~uTCs~u; (2)

where E½:� denotes the statistical expectation and Cs the covariance
matrix of ~s

Cs ¼ E½~s~sT � ¼
2
4 σ2z σzn σze
σzn σ2n σne
σze σne σ2e

3
5; (3)

where

σ2z ¼ E½z2�; σ2n ¼ E½n2�; σ2e ¼ E½e2�
and

σzn ¼ E½zn�; σne ¼ E½ne�; σze ¼ E½ze�.

The projection’s variance σ2y can be maximized, using Lagrange
multipliers, given the constraint k~uk ¼ 1. The above procedure
is equal to the maximization of the following expression

Φð~u; λÞ ¼ σ2y − λðk~uk − 1Þ ¼ ~uTCs~u − λð~uT ~u − 1Þ. (4)

By differentiating this expression with respect to ~u and λ, the fol-
lowing partial differential equations are obtained

∂Φ
∂λ

¼ ð~uT ~u − 1Þ; (5)

and

∂Φ
∂~u

¼ Cs~u − λ~u ¼ ðCs − λIÞ~u ¼ 0. (6)

The first equation defines the initial constraint and the second sug-
gests that λ is eigenvalue of the covariance matrix, whereas ~u is the
corresponding eigenvector. Moreover, the eigenvectors, obtained by
the diagonalization of the covariance matrix, represent an ortho-
normal base of the 3D space and form an ellipsoid (polarization
ellipsoid), that best fits to the data in a least-squares sense. From
equation 6, it is clear that the polarization characteristics of a signal

KS2 Lois et al.



are obtained by solving the eigenvalue problem of the data covar-
iance matrix because, once the principal axes of the polarization
ellipsoid are estimated, the particle motion is determined. Using at-
tributes computed from the principal axes, information describing
the degree of linear polarization, the directivity of the particle mo-
tion, the azimuth of P-wave propagation as well as the apparent
incidence angle of rectilinear motion is extracted. For example,
according to Jurkevics (1988) if λ1 > λ2 > λ3, the rectilinearity
is given by the following relation

Rect ¼ 1 −
λ2 þ λ3
2λ1

; (7)

which is expected to be close to one for P and S phases, whereas the
planarity of the particle motion is given by

Plan ¼ 1 −
2λ3

λ1 þ λ2
; (8)

which is expected to be close to zero for the P arrival and close to
one for the first S-wave arrival. It is essential to mention, that
the above assumption for the S-wave is valid only in the case of
an isotropic medium (Eisner et al., 2009). Additionally if ~uij are
the corresponding eigenvectors, with i ¼ 1, 2, 3, the three compo-
nents (vertical, north–south and east–west) and j ¼ 1, 2, 3, the three
direction cosines then the azimuth of P-wave propagation is
given by

Pazimuth ¼ tan−1
�
~u12
~u13

�
(9)

and the incident angle of rectilinear motion can be obtained by the
relation

Pincidence ¼ cos−1ðj~u11jÞ: (10)

Higher-order statistics

The mean value, variance, autocorrelation, and power spectrum
constitute the first and second-order statistics, respectively, and are
extensively used to describe processes that are linear and Gaussian
distributed. However, most of the processes in earth sciences devi-
ate from linearity and Gaussianity. Such processes can be studied
through higher-order statistics (HOS).
Specifically, let’s assume the N-sample, real and zero-mean pro-

cess fXðkÞg, that is fourth-order stationary. Its second-, third-, and
fourth-order moments are defined as (Nikias et al., 1993)

R2ðmÞ ¼ EfXðkÞXðkþmÞg
R3ðm; nÞ ¼ EfXðkÞXðkþmÞXðkþ nÞg

R4ðm; n; lÞ ¼ EfXðkÞXðkþmÞXðkþ nÞXðkþ lÞg; (11)

where Ef:g denotes the expectation, and for a continuous random
variable x is given by

Efxg ¼
Z

∞

−∞
xfðxÞdx; (12)

where fðxÞ is the probability density function of x. Note that R2ð0Þ
equals to the variance σ2ðxÞ of the random variable x. Another set
of statistical parameters that can be used, due to their excellent
noise-suppressing properties, are cumulants and can be expressed
in terms of the moments. The following formulas denote the third-
and fourth- order cumulant sequences of fXðkÞg

C3ðm; nÞ ¼ R3ðm; nÞ
C4ðm; n; lÞ ¼ R4ðm; n; lÞ − 3ðR2ðmÞÞ2. (13)

For the zero-lag case, that is m ¼ n ¼ l ¼ 0, we obtain the skew-
ness C3ð0; 0Þ and kurtosis C4ð0; 0; 0Þ.
Skewness provides a measure of symmetry of the distribution and

is expected to become zero if the distribution is symmetrical.
Furthermore, it takes negative values if the distribution contains
outliers to the left and positive values in the opposite case. The
fourth-order zero-lag cumulant, the kurtosis, provides a measure
of heaviness of the tails of the distribution, and takes the value three
for Gaussian distributed random variables. Kurtosis values larger
than three indicate widening of the distribution, whereas narrowing
is indicated for values smaller than three.
HOS parameters were first used in seismic phase automatic iden-

tification by Saragiotis et al. (2002) who developed the PAI-S/K
algorithm to identify the P-onset time of a seismic event. According
to this algorithm, skewness and kurtosis, as measures of asymmetry
and non-Gaussianity, respectively, are estimated over a moving time
window, and they are expected to present maxima in the neighbor-
hood of the P arrival, due to the changes of the signal statistics. The
location of the maximum slope of these curves is assigned as the
final P-onset time estimation. In general, when the signal’s statistics
change the degree of non-Gaussianity is higher than asymmetry
(Saragiotis et al., 2002), thus kurtosis takes much higher values
than skewness. Because kurtosis is more sensitive on such changes,
it provides a better phase detection criterion than skewness. The
above statement is confirmed by several automatic P-picking exper-
iments on local earthquake data (Lois et al., 2010; Tselentis et al.,
2011a) which have shown that the best results were obtained using
the kurtosis criterion. Thus, only this HOS parameter is used in the
proposed method.

METHODOLOGY

Given an N-length segment of the record, where a seismic event
exists and the P-arrival time has been estimated, an M-sample time
moving window is applied which divides this segment into overlap-
ping parts of the record. On each section, the algebraic eigenvalue
problem of the data covariance matrix is solved, that is, the covar-
iance matrix is diagonalized and three eigenvalues λ1 > λ2 > λ3
with their corresponding eigenvectors are obtained. Because the
same procedure takes place for each time window, three different
sequences λ1ðtÞ, λ2ðtÞ, λ3ðtÞ, t ¼ 1::N, are formed, giving a measure
of the energy in the direction of the three principal axes of the
polarization ellipsoid (Figure 1d).
In this work, we consider only the sequence corresponding to the

maximum eigenvalue λ1ðtÞ, because it is more sensitive to energy
changes in the direction of signal’s propagation. Moreover, we
choose as a characteristic function, the square root of the maximum
eigenvalue’s curve fðtÞ ¼ ffiffiffiffiffiffiffiffiffiffi

λ1ðtÞ
p

(Figure 2), rather than λ1ðtÞ it-
self, due to the property of the square root function to compress
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the signal, that is, reduce its dynamical range by increasing its lower
values and decreasing its higher values. This enables us to observe
small changes in the signal’s energy. We also have to mention that,
although the logarithm function is usually used to suppress high
values and enhance the smaller ones, the characteristic function
which is derived by our analysis appears to be smoother and
more distinct using the square root function instead of the loga-
rithm. Furthermore, on low S/N the use of logarithm weakens
the performance of the algorithm, because it provides residual times
almost two times larger than the ones obtained by the proposed
technique.
The next step is to evaluate the square root values of kurtosisffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kurðfðtÞÞp

on the part of the characteristic function fðtÞ, corre-
sponding to the time section starting a few samples after the P-
arrival tP, up to the end of the seismic event tcoda, which have been
estimated by the detection algorithm. The selection of the specific
segment of the record is necessary, for avoiding erroneous picks
such as the P-arrival, and for providing also a time window where
the S-wave exists. Specifically, on this part of the record, kurtosis is
evaluated over a sliding M-sample overlapping moving window,
using the estimator

kurðfðtÞÞ ¼
P

M
t¼1 ðfðtÞ − m̂fÞ4
ðM − 1Þσ̂4f

; (14)

where m̂f and σ̂f are the estimators of the mean value and standard
deviation of fðtÞ, respectively, and M is the length of the moving
window.

During the S-wave arrival (Figure 3b), the values of kurtosis of
fðtÞ present a steep increment due to the change of the signal sta-
tistics (Figure 3d). Furthermore, with close inspection we can ob-
serve that the S-onset time coincides with the point where the values
of the sequence begin to increase and not with the maximum value
of the curve. This can be explained by the fact that the maximum
value is reached only when a sufficient fraction of the time window
contains the S-wave, which is beyond the S-arrival. Thus, the max-
imum slope is needed to be assessed through signal’s first difference
(Figure 3e). The location of the initial S-onset time estimation is
given by the maximum value of the first difference of the sequence
KðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kurðfðtÞÞp
, that is

Son ¼ max
t
ðΔKðtÞÞ; t ∈ ½tP;tcoda�; (15)

where Δ refers to the first difference operator ΔKðtÞ ¼ KðtÞ−
Kðt − 1Þ. An important issue that needs to be addressed is the
choice of the sliding window’s length, which is the only parameter
of the algorithm that has to be set. A too-short window results in
early picks, because the algorithm becomes too sensitive to small
changes. On the other hand, by setting long time window duration,
it is possible to obtain picks that are beyond the real S-wave arrival.
To overcome the two aforementioned cases of false alarm, a mul-

tiwindow approach accompanied with a weighting scenario is pro-
posed, as a correction procedure. For each S-arrival time estimation,
an automatically evaluated uncertainty index is introduced for eval-
uating the probability of a false alarm. This quality measure, similar
to S/N, is based on an energy ratio estimated on the two horizontal

Figure 1. Example of the vertical (a), north–south (b), and east–west (c), components of a seismic signal, and (d) the corresponding sequences
obtained by the eigenvalues.
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Figure 2. Example of a seismic signal (a) and the characteristic function based on the maximum eigenvalue (b).

Figure 3. Example of the algorithm’s performance on a good-quality signal, using a 0.6 s moving window. Seismic signal (a), the selected
part of the signal as indicated in (a), by a dashed rectangle (b), the characteristic function (c), kurtosis of the characteristic function (d),
and the slope of kurtosis evaluated through its first derivative (e). The dashed line corresponds to the automatic pick as estimated by the
algorithm.
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components, into a predefined time section [Son − t, Son þ t] and is
given in dB by the relation

q ¼ 20log10

�
σSon
σPcoda

�
; (16)

where Son is the automatically estimated S-arrival time, σSon and
σPcoda are the standard deviations evaluated on the time windows
[Son, Son þ t] and [Son − t, Son], respectively, and t is time in sec-
onds that is selected empirically according to the S-P difference of
the examined seismic events. For example, during the arrival of the
S-wave, the energy of the signal usually increases, thus if the auto-
matic pick is close to the real one, positive values of q are expected.
On the other hand, an early pick is expected to have q-values close
to zero, while a negative q indicates a false pick, because there is no
probability of existing P-coda waves with higher energy than the
S-waves. Nevertheless, it has to be mentioned that a q value close
to zero corresponding to a low-quality pick, does not necessarily
indicate a false pick, but shows a case where the seismic signal’s
energy during the S-wave arrival does not change significantly and
careful human analyst’s inspection is needed.

The algorithm is applied on the seismic data using windows
with various lengths, providing a set fSiongi¼1;::w of S-arrival times
with the corresponding qs which are used as weights. The final
S-onset time estimation is given by the weighted mean of the set
fSiongi¼1;::w

Sfinal ¼

Xw
i¼1

Sionqi

Xw
i¼1

qi

; (17)

where Sion are the estimations obtained by the algorithm and form
the set of solutions, qi are the corresponding weights, whereas the
index i ¼ 1; 2; ::w indicates the number of the different time win-
dows used. Applying this weighting scheme, possible outliers (false
picks) are eliminated by the algorithm, because they obtain weights
with values close to zero. Following the same approach, the overall
quality qfinal of the final estimation Sfinal is evaluated and four
classes of uncertainty A, B, C, and D are defined as follows

Uncertainty class ¼

8>><
>>:

A; if qfinal > 10

B; if 6 < qfinal < 10

C; if 2 < qfinal < 6

D; if qfinal < 2

.× (18)

Class A corresponds to high-quality picks, B and C to moderate,
and D shows poor-quality picks corresponding to high probability
of false alarm. A pick which is assigned to a negative quality index
is indicated as a false pick as previously mentioned. Although the
four uncertainty classes are defined empirically according to our
experience on this kind of data, equation 18 could be a useful tool
for analysts, because it could provide recommendation regarding
necessity of manual reprocessing.

DATA

After the occurrence of anMw 4.7, August 7, 2011, seismic event
at Nafpaktos, Greece, a 3C temporary seismic station was installed

in the area, to enhance the monitoring of the aftershock sequence.
The station consisted of a 1-Hz LandTech LT100 sensor installed at
a depth of 1 m and 24-bit LandTech LTSR-24 recorder connected to
a global positioning system (GPS). The recording took place for a
period of 15 days with a sampling frequency of 100 Hz. From the
continuous recording, a total number of almost 150 microearth-
quakes, of magnitudes 0.5–1.5 Mw and shallow hypocenters up
to 13 km, were detected using a chi-squared-based test statistic
(Lois et al., 2010) and the P-phase arrival times were identified
using the kurtosis criterion (Tselentis et al., 2011; Saragiotis et al.,
2002). The detected events were verified by an expert analyst in
several stations (at least three) from a permanent local network
at 2 up to 12 km from the station used in the analysis. This ensured
that the specific events were microearthquakes and not some other
kind of energy recorded (e.g., noise bursts, anthropogenic noise,
etc). Moreover, the validity of the automatic P-onsets was con-
firmed by the expert analyst who finally chose 110 seismic events
as input data set for the proposed S-wave identification algorithm.
The criterion for the selection of the specific data set was the ability
of the analyst to pick most of the S-onset times, with low degree of
uncertainty.

RESULTS

The proposed algorithm has been applied on the specific set of
local earthquake data and the results are compared with the S-picks
provided by the analyst. From the 110 manual picks, 39 picks
(35.4%) were considered by the analyst as good-quality picks, 67
(60.9%) as average-quality picks, and 4 (3.7%) as poor-quality
picks indicating high level of uncertainty. Moreover, the data set
consisted of microearthquakes superimposed over various levels of
noise, specifically from 3 dB corresponding to low S/N, up to 35 dB
corresponding to high-quality signal. In Figures 4 and 5, examples
of seismic events with high and low S/N are illustrated. In our
experiment, we used four different windows with lengths that were
empirically selected to be 0.4, 0.5, 0.6, and 0.7 seconds, respec-
tively, according to the average S-P time difference, which was 1.1
seconds. Specifically, we selected the aforementioned lengths with
respect to the half of the average S-P time difference. Moreover, the
t-parameter was selected to be 0.8 seconds for q-evaluation, and
also no filtering procedure took place. An example of the algo-
rithm’s performance is presented in Figure 6.

The implementation of the proposed technique resulted in an
average residual time of 0.0517 seconds, corresponding to more
than five samples. The term residual time refers to the mean value
of the absolute difference of the manual pick to the automatic pick.
Moreover, 32 picks (29.1%) were classified into uncertainty class
A, 62 (56.4%) into class B, 16 picks (14.5%) into class C, and no
picks were classified into class D. From the above results, it is evi-
dent that the algorithm is able to perform sufficiently well on this
kind of data.
To elaborate the evaluation of the proposed technique, a noise ro-

bustness test was designed using artificial and real seismic noise.
An example of the effect of this procedure for both cases is depicted
in Figures 7 and 8, respectively. In the first case, Gaussian distrib-
uted noise was scaled and added to the initial data set, to achieve
S/N range from 0 up to 8 dB. The algorithm’s implementation on
the new data set resulted in an average accuracy of 0.079 seconds,
and from the new 110 automatic picks, 6 (5.5%) were classified into
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class A, 63 (57.3%) into class B, 41 (37.2%) into class C, and again
no picks into class D.
In the second case, real seismic noise was added to the initial data

set, the S/N varied from −1 up to 8 dB, and the mean residual time

was 0.092 sec. Although both tests took place on almost similar
noise levels, the algorithm was affected more by the addition of real
seismic noise. A possible explanation to this result is the fact
that real seismic noise consists of observations that are strongly

Figure 5. Example of a low-quality seismic signal.

Figure 4. Example of a high-quality seismic signal.
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correlated, in contrast to the synthetic Gaussian noise. The classi-
fication of the automatic picks to the uncertainty classes was the
following: 5 picks (4.6%) into class A, 63 picks (57.3%) into class
B, 41 picks (37.2%) into class C, and one pick (0.9%) into class D.

The distribution of the residual times as well as the picks’ classi-
fication for all cases, are presented in Figure 9. However, in spite of
the wide reduction of the S/N, the algorithm sustained a good per-
formance, as long as the final mean residuals’ time on both cases did

Figure 7. The effect of synthetic noise addition and the corresponding automatic P and S picks (dashed lines).

Figure 6. Example of the performance of the proposed algorithm. P- and S-arrivals are indicated by dashed lines.
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Figure 8. The effect of real seismic noise addition and the corresponding P and S picks (dashed lines).

Figure 9. Histograms of the residual times and picks’ classification evaluated by the algorithm. Top panel shows the histograms of the
residual times for (a) the initial data set, (b) the data set resulting by the addition of Gaussian noise, and (c) the data set resulting by
the addition of real seismic noise. Bottom panel (d, e, f) shows the classification of the automatic picks into the four classes, for the three
aforementioned cases.
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not exceed the acceptable value of 0.1 sec (10 samples). Finally, in
Table 1, the mean residual time of each uncertainty group is pre-
sented for the three cases, indicating how the values of parameter
q relate to the quality of automatic picks.

CONCLUSIONS

In this paper, a new approach is proposed dealing with the auto-
matic determination of the S-wave onset time. Given the detected
seismic event and the P arrival, the eigenvalue problem of data cov-
ariance matrix is solved over small time intervals. From the above
analysis, a characteristic function based on the maximum eigenva-
lue is formed, and its statistical attributes provide a first estimation
of S-onset time. Furthermore, because the algorithm’s performance
depends on the size of the used time window, we follow a multi-
window scheme along with a weighting scenario based on energy
criteria. Through this approach, a set of solutions is obtained and the
weighted mean provides a final, weighted S-onset time. The algo-
rithm’s implementation on real data provided sufficiently good re-
sults in comparison with the manual picks, used as a reference data
set. Moreover, the technique was subjected to a noise robustness
test, using artificial and real seismic noise, resulting in an average
accuracy of less than 0.1 seconds. In general, the proposed method
is straightforward to implement, demands low computational re-
sources, and the only parameters that have to be set are the lengths
of the time moving windows the algorithm uses. Furthermore, earth-
quake location parameters are not necessary for the proposed algo-
rithm to work properly. It is also understood that a good quality
P-pick is a prerequisite to conclude on correct estimations of S-arrival
time. Due to its efficiency, the specific technique can be used as a
useful tool for processing seismograms obtained by microseismic
networks, minimizing the necessity for human intervention.
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