From Earthquake Centroid to Spatial-Temporal Rupture Evolution: Mw 6.3 Movri Mountain Earthquake, June 8, 2008, Greece

F. Gallovič, J. Zahradník, D. Křížová, V. Plicka, E. Sokos, A. Serpetsidaki, and G-A. Tselentis

We propose a new strategy to reveal the spatial-temporal evolution of the earthquake rupture process from near-regional data, without assuming a constant rupture velocity. The approach is based on a conjugate gradient method, for which we express analytically the required waveform-misfit derivative with respect to slip on the fault. The derivative is given by back-propagation of residual seismograms towards the source. A good initial source approximation is necessary, being obtained from hypocenter location and centroid-moment tensor solution. The iterative approach then gradually reveals major characteristics of the source process. As an application, we investigate a line source model of a damaging Mw6.3 earthquake in Greece, revealing predominantly unilateral rupture propagation and two or three main slip patches, one of which being significantly delayed, indicating a temporary rupture arrest. The region of largest slip coincides with the region of least abundant aftershocks between hypocenter and centroid. The method has application potential for shakemaps, emergency response, and/or after-shock hazard assessment.

1. Introduction

Retrieval of earthquake source parameters is primarily needed for better insight into the physics of the faulting process. However, these parameters are useful also in practical real-time application, such as generating accurate shakemaps and planning emergency response [Wald et al., 1999; Convertito et al., 2008]. Many observational studies and numerical simulations [Gallovič and Brokeshová, 2004; Wang et al., 2008] further confirmed the importance of such parameters as the direction of the rupture propagation and position of main asperities since they dramatically affect the strong ground motions, see also Mai [2009] and references therein. Another application requiring accurate source parameters in near real-time is the aftershock hazard assessment [Gerstenberger et al., 2005; Gallovič and Brokeshová, 2008].

Regional earthquake studies usually comprise hypocenter determination and calculation of the centroid-moment tensor (CMT), which represents a first-order approximation of the source process. Discriminating the fault plane out of the two nodal planes might follow, possibly complemented with a discrete representation of the earthquake by multiple point-sources. Further step is a gross estimation of the spatial-temporal rupture evolution in terms of, e.g., second-order moment tensors [McGuire et al., 2002], slip patches [Vallee and Bouchon, 2004] or continuous representation of the rupture evolution. For example, Dreger and Kavetina [2000] seek the best-fitting constant rupture velocity and rise time to reveal the continuous slip distribution on the fault. However, such parameterizations might bias the inverted slip model when the rupture evolution violates the simplifying presumptions.

The present paper introduces a new non-parametric method to extend source models from their first-order approximation (CMT) to a more insightful image of the rupture evolution. Larmat et al. [2006] and Ishii et al. [2005] used seismic source time-reversal imaging, showing that back-propagated records refocus seismic waves at the right location and time of the earthquake. By a similar approach Altmann and Shearer [2007] localized a high-frequency asperity of the 2004 Parkfield earthquake. In our approach, starting from an initial source model based on the CMT solution, we back-propagate residual seismograms to obtain subsequent models by iteration, using a conjugate gradients technique. The new inversion strategy is applied to a damaging earthquake in Greece.

2. Method of iterative slip inversion

Based on recent adjoint tomographic methods [Tramp et al., 2005], we address the earthquake rupture evolution from a similar viewpoint: the gradient of the waveform misfit with respect to the model parameters is analytically derived, which enables efficient minimization by routine methods of conjugate gradients. For simplicity, we assume a line fault of length L and formal width W, $L >> W$. The j-th component of the synthetic seismogram $u_j(x_i, t)$ at receiver x_i can be expressed by the representation theorem [Aki and Richards, 2002], i.e. by integration over the fault coordinate ξ of the slip velocity $s(\xi, t)$, varying with time t, convolved with the impulse response of the medium $H(x_i; \xi, t)$ for a predetermined double-couple mechanism.

We seek to estimate slip velocity $s(\xi, t)$ without any parameterizations of its spatial-temporal distribution (except its numerical discretization by piece-wise constant basis functions). Misfit is defined as an L2 norm between synthetic and observed seismograms, with an additional stabilizing constraint on the scalar seismic moment, assumed to have a predetermined value M_{0fix} (from a previous CMT analysis),

$$
\Lambda = \frac{1}{2LW} \int_0^T \sum_{i,j} \left[u_j(x_i, t) - u_j^{obs}(x_i, t) \right]^2 dt - \frac{1}{2M_{0fix}^2} [M_0 - M_{0fix}]^2
$$

(1)
The normalizing factor L_u is the L2 data norm. The Fréchet differential of the misfit Λ can be expressed as

$$DA = \int_0^T \int_0^L \left(\frac{1}{L_u} \sum_{i,j} H(x_i; \xi, -t) \star \left[u_j(x_i, t) - u^\text{obs}_j(x_i, t) \right] - \frac{1}{M_0\text{fix}} [M_0 - M_0\text{fix}] \mu W \right) Ds(\xi, t)d\xi dt$$

with rigidity denoted as μ. Equation (2) relates a small change of misfit DA to small changes in the slip model $Ds(\xi, t)$ via the kernel in round brackets in which residual seismograms $u_j - u^\text{obs}_j$ are back-propagated in time towards the source. Furthermore, assuming the slip velocity function to be non-negative, we substitute $Ds(\xi, t) = s(\xi, t)D\ln s(\xi, t)$; this is an implicit positivity constraint [Tarantola, 1987]. Equation (2) is the key ingredient for the minimization of Λ by the conjugate gradient method [Press et al., 1992]. The inversion procedure is non-linear and iterative; it should start from a good first approximation, in our case represented by the CMT solution. For the complete derivation of equation (2) and the final discretized formula, see the electronic supplement. Note also that generalization to 2D fault models is straightforward. The line-fault approximation was chosen due to a poor depth resolution in the present application.

3. Application to the 2008 Movri Mountain earthquake

On June 8, 2008 (12:25 UTC) an $M_{w}6.3$ strike-slip earthquake occurred in the north-western Peloponnese (Greece) without clear relation to mapped faults, but as close as ~30 km from Patras, the third major city of Greece [Ganas et al., 2009]. Two victims were reported, along with hundreds of injuries and extensive damage, mainly in non-
reinforced buildings. Although strong earthquakes are common in western Greece, this event took place in a region free of strong events throughout the historic observation period. The earthquake was followed by an aseismic sequence, composed of at least two clusters.

To investigate the Movri Mountain earthquake we proceeded in a cascade of the following procedures. First, the hypocenter was relocated at 37.94°N, 21.52°E, depth 19 km, 12:25:28.15 UTC. Then waveforms from eight near-regional stations (see Figure 1), band-pass filtered 0.01–10 Hz, were inverted for the point-source CMT using the ISOLA code [Sokos and Zahradník, 2008]; centroid position 38.00°N, 21.57°E, depth 17 km, 12:25:35.5 UTC, strike/dip/rake = 31°/84°/-179°, double-couple percentage 90%, scalar moment 3.4 · 1018 Nm. The theoretical impulse responses were calculated in a layered crustal model [Haslinger et al., 1999] using the discrete wavenumber method [Bouchon, 1981]. Second, following the H-C method [Zahradník et al., 2006], the hypocenter and centroid were combined to identify the north-east south-west trending fault plane, without waiting for aftershocks; the rupture propagation direction was also indicated by the relative position of the hypocenter and centroid (Figure 1). Then, a multiple point-source solution, similar to Zahradník et al. [2005], was calculated again with the ISOLA code along a 40 km trial line passing through the centroid position. It revealed three significant contributions of a rather stable focal mechanism (Figure 1); the cumulative scalar moment was equivalent to the CMT solution.

At this point, the new method described above is utilized. The centroid position, and time, along with its focal mechanism and scalar seismic moment from the previous steps are used as a first order approximation of the line source model (see Figure 2a, top left frame). We use the same frequency band and set of stations as for the initial three-point-source modeling. Progress of the slip-inversion iterations is shown in Figure 2a. During the first iteration steps the overall rupture-propagation direction emerges, while at later steps the slip becomes portioned, and the fit slightly increases. Starting from the 18th iteration, the slip model does not change much. Figure A1 in the electronic supplement shows a synthetic test resembling the inverted model. The iterative process is remarkably similar, also suggesting the asperity splitting in the later iteration steps.

The waveform match of the final model has an overall variance reduction of 0.7. Figure 2b demonstrates details of the waveform fitting at two stations (PYL and SER); fit for other stations is presented in the electronic supplement (Figure A3). Figure A4 in the electronic supplement shows the waveform match for the 26th iteration of the new method and the CMT solution with main improvement in the duration of the dominant pulses of the records. Note that not all stations are equally sensitive to the rupture evolution. For example, the rupture propagation direction revealed in the first iterations are constrained by the stations lying along the fault line (SER, MAM, ZAK). Later, after this major contribution is removed from the data, coherent information from all stations suggests the splitting of the asperities.

Figure 3a shows again the more or less arbitrarily chosen 26th iteration as the final model. Note that similar result was obtained when using a different crustal model and repeatedly removing each station (jack-knifing). The slip evolution exhibits predominantly unilateral rupture propagation (to the north-east) along a 20 km long segment of the fault, at a velocity of about 3 km/s starting close to the (independently determined) hypocenter. It is to emphasize that these features are data driven, and not constrained a priori. The slip velocity has at least two or three main episodes that roughly correlate with the previous three-point-source model. Nevertheless, compared to the point sources, the patches found by the new method provide a considerably deeper insight into the spatial-temporal rupture evolution. An interesting finding is that one of the slip episodes features a significant time delay, most likely caused by a temporary rupture arrest. Note that such results could not be easily obtained with methods constraining the rupture velocity at a constant value.
4. Discussion and Conclusions

In this study, a new iterative slip-inversion method based on back-propagation of residual seismograms is proposed. As an application, we investigate a recent damaging 2008 Mw6.3 earthquake in Greece, using near-regional data. The inversion method requires an initial approximation of the seismic source, which we obtain in cascade of operations: hypocenter relocation and determination of the centroid position and focal mechanism, complemented by identification of the fault plane. The iterative approach then gradually reveals major characteristics of the source process such as direction of the rupture propagation and dominant asperities.

Figure 3b shows the final slip model from Figure 3a on a map in relation to the double-difference relocated aftershocks. The largest slip coincides with the region of the least abundant aftershocks (almost a gap), between hypocenter and centroid. Note that the north-east and south-west clusters of aftershocks differ in several aspects: The former group comprised events up to M 4.4, the latter contained only smaller magnitudes (M≤3.3). Moreover, first event of M≥3 occurred in the south-western group as late as 13 hours after the mainshock, while, during the same period, there were more than 30 such events in the north-eastern group. We speculate that the north-eastern aftershocks might have been boosted by the predominantly unilateral rupture propagation, but a detailed study would require dynamic rupture modeling.

The cascade methodology and the iterative slip inversion were primarily developed for obtaining gross features of the extended seismic source, extractable from near-regional waveforms at relatively low frequencies. Such data have recently been broadly available in near-real time. Finer details of the rupture evolution would require higher frequencies, local strong-motion stations, and significantly better constrained crustal models; as a rule, except a few densely instrumented regions of the world, such data are available only a considerable time after the event, thus preventing a near real-time analysis of the rupture process.

The new methodology has two main advantages: (i) It provides a stable estimate of the rupture evolution (without splitting the slip pattern into ill-conditioned details). Robustness comes from the positivity constraint, fixed moment and a good initial approximation. (ii) It is quite fast, taking minutes on a PC. As such it has a strong application potential in shakemaps, emergency response, and/or in aftershock hazard assessment.

Acknowledgments. Martin Mai and an anonymous reviewer helped to improve the manuscript. The authors acknowledge free Internet access of waveforms provided by NOA (THL) and ITSU (stations ZAK, KAL): special thanks to Ch. Papaoanou. The remaining stations (RGA, MAM, SER, LTK, PVL) belong to the PSLNet network. Financial support: GACR 205/07/0592, GACR 205/08/P013, MSM021620860, GAUK 14509. This research has benefited from funding provided by the Italian Presidenza del Consiglio dei Ministri - Dipartimento della Protezione Civile (DPC). Scientific papers funded by DPC do not represent its official opinion and policies.

References

Sokos, E., and J. Zahradník (2008), ISOLA A Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data, Computers & Geosciences, 34, 967-977.

