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Abstract--A new technique for calculating interstation Green's functions and attenuation co- 
efficients for seismic surface waves is presented. 

The interstation Green's function is evaluated from the autocorrelation functions of the seis- 
mograms, which are obtained from a maximum entropy process. 

Since a data-invariant time window is not used, the evaluated Green's function gives reliable 
information on both the amplitude and the phase spectra of the system. 

This new technique is compared with other methods by applying them to both synthetic and real 
data from a path in the Canadian shield. 
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1. Information 

Useful information about the dynamic properties of the crust and upper mantle 
structure may be obtained from the dispersion and attenuation characteristics of 
surface waves, and in particular from the interstation transfer function, which is 
given by the spectral ratio between two waveforms observed at two stations lying 
on a common great circle path with the earthquake epicenter. 

LANDISMAN et aL (1969) noticed that considerable reduction of the noise level 
and stabilization of the Green's function can be achieved by windowing the 
cross-correlogram, since the cross-correlation function is an approximation of the 
interstation impulse response. A different approach to the problem of calculating 
the interstation Green's function has been recently given by TAYLOR and TOKSt3Z 
(1982) and HWANG and MITCHELL (1986), which are based on the use of a time 
domain and a frequency domain Wiener filters respectively. 

The problems that arise with conventional methods in determining interstation 
Green's functions are mainly due to assumptions that are made concerning the data 
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that lie outside of the known interval (periodic or zero). In the analysis of surface 
wave records, whose lengths often are of the order of periods of interest, the above 
assumptions can become quite unreasonable and often may result in unfortunate 
properties of the spectral estimator. This could considerably distort the obtained 
phase components of the required transfer function. 

In this paper we present a technique for determining the interstation Green's 
function following Wiener optimum filtering and autoregressive (AR) modeling. 
Since data-invariant time window is not used in this method, the estimated transfer 
function gives reliable information on both the amplitude and phase spectra of the 
system. Synthetic seismograms are computed using a known anelastic medium and 
are used to test the method. Finally, the technique is applied to a surface wave path 
crossing the Canadian shield. 

2. Interstation Green Function with Deconvolution 

Assume two stations positioned along the same great circle path with the 
earthquake epicenter (Figure 1), and letting x(t) be the seismogram nearest the 
source. Then the record y(t) at station [$2] can be expressed, under time-invariant 
system assumptions, as a convolution integral of the input x(t) to the interstation 
crustal medium with its impulse response h(t) 

fo y( t) = h(m)x( t - m) dm = h( t) �9 x(  t). (1) 

In practice we cannot obtain a complete form of h(m) for the whole interval 
0 < m < oo, since we use only a finite amount of data x(n), y(n) for the interval 
0 < n < N. The error difference between the observed and estimated waveforms is 
given by 

S(n) = y(n) - x(n - m)h(m). (2) 

By considering the spectra of the recorded seismograms and the required 
impulse response (transfer or Green's function) then eq. (1) can be written in the 
frequency domain as follows 

Y ( f )  = X ( f ) H ( f )  (3) 

• YCI) 

Figure 1 
Schematic illustration of the interstation Green's function. 
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and an obvious solution to the deconvolution problem is 

H( f )  = Y( f ) /X( f ) .  (4) 

In practice, this straightforward division of spectral terms will lead to erroneous 
results if the noise in Y( f )  has significant power at those frequencies where X( f )  
is small. Since the deconvolution can be very unstable because of random noise, 
multipathing and interference by other modes, statistical stability and meaningful 
results can be obtained only if eq. (4) is altered, and a variety of deconvolution 
techniques have been suggested to accomplish this goal (OLDENBURG, 1981; SILVtA 
and ROBINSON, 1979). 

Among these deconvolution schemes, of particular use has been the Wiener 
method (PEACOCK and TREITEL, 1969) which has been employed by TAYLOR and 
TOKSGZ (1982) for determining the interstation Green's function from surface wave 
measurements. 

The basic principle of Wiener deconvolution is mean square optimization which 
implies that the expected value of the squared difference between the desired and 
actual output is minimized 

{Sm} 2 = E(h0, hi . . . . .  hN) = minimum. (5) 

The minimum of E(h0, hi . . . . .  hu) corresponds to a point (in the N +  1 
dimensional space of the coefficients), where the partial derivatives of E, with 
respect to the coefficients vanish and we obtain the following system of equations 

[RI[H] r = [C] r (6) 

where [R] is the matrix containing the coefficients of the autocorrelation of the 
input x,, [H] r is a column vector containing the required interstation impulse 
response, and [C] r is a column vector containing the cross-correlation between 
input and output. 

The structure of the matrix JR] (Toeplitz form), makes possible the application 
of a very efficient iterative method, due to LEVINSON (1974). In order to obtain 
stable solutions of eq. (6), sometimes the principal diagonal of the matrix JR] is 
modified by adding a small constant to its elements. 

In the frequency domain, the deconvolution operation can be considerably 
simplified since the normal equation (6) can be written as 

C(f)  = H ( f ) R ( f )  (7) 

where C(f), H( f )  and R( f )  are the Fourier transforms of the cross-correlation, 
Green's function, and autocorrelation, respectively. The required Green's function 
can be easily obtained as the ratio of the smoothed cross-spectrum to the smoothed 
autospectrum 

H( f )  --- C( f ) /R( f ) .  (8) 
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From the above it is obvious that, if the autocorrelation [R] and cross-correla- 
tion [C] matrices are given, the required Green's function operator [H] can be 
determined either from eqs. (6) or (8). 

The apparent advantage of Wiener filtering over the use of simple spectra ratios 
(eq. 4), is the windowing which cuts off the noise outside the window. Furthermore, 
HWANG and MITCHELL (1986), noting that the autocorrelation function usually 
has a shorter duration, improved the Wiener filtering by applying a shorter window 
in the autocorrelation function to achieve a larger reduction of noise. 

Since the derivation of both the autocorrelation and cross-correlation functions 
are expressed as infinite time series of the input x, and the output Yt, and since x,, 
Yt are given only within a finite interval, the assumptions that we make about the 
data beyond the end points, inevitably introduce an artificial phase shift and make 
spectral resolutions worse. 

In order to avoid these difficulties, we shall follow Burg's method and develop 
a procedure of calculating the Green's function operator [H]. The main point is that 
Burg's iterative algorithm is used to calculate the correlation operators and the 
medium impulse response. 

3. Formulation 

The details of Burg's method have been described by many authors (e.g., 
ULRYCH and BISHOP, 1975; ULRYCH and CLAYTON, 1976; KAY, 1988). In the 
following, we shall give only a brief description of the formulae required. 

Let the prediction error operator for x be a[m], (0 < m < M )  where a[0] = 1. 
Then the forward linear prediction estimate is given by 

M 

efM [n] = xt In] + ~ xt [n -- mla M [m] (9) 
m = l  

and the backward linear prediction error by 

3 4  

eb[n] = x t [ n - - m ]  + ~, xt[n + m - M ] a * [ m ]  (10) 
m ~ l  

where * stands for complex conjugate. 
It is known (e.g., KAY, 1988; ULRYCH and BISHOP, 1975), that the Levinson 

recursive solution to the Yule-Walker equations relates the autoregressive (AR) 
parameters of order M to those of order M - 1 as 

a[m] = aM_ l [m] + KM_ i a * _  l [M -- m] (11) 

for m = 0 to M, where K is the reflection coefficient. 
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Substituting eq. (11) into eqs. (9) and (10), we obtain the following recurrence 
relations (MARPLE, 1987) 

efM[n] = e M _ l [ n  ] + KM_IeM_I[n  -- 1] 

(12) 
e~[n] = eM_l[n -- 1] + KM_1eM_~[n]. 

By minimizing the sum of squares of the forward and backward prediction 
errors over the time interval 0 < n < N 

N 
q~  = ~ {[efM[n]] 2 + [e~[n]] 2} = minimum 

n=0 

we can calculate the reflection coefficient. It is important to note that the summa- 
tion ranges only over the available data. Thus, q~ is a function of a single 
parameter K since the prediction errors from order M - 1 will be known. 

Differentiating q~M with respect to the real and imaginary parts of K and setting 
the result equal to zero, yields 

~q/O Re{KM_~} + iOq/O Im{Kac_~ } = 0 (13) 

and solving for KM_ ~ we get 

Kac_~ = { - - 2  ,, ~= o efM-1[n]e~-~[n--1]}/{~[e~-~[n--1]2+efac-l[n]]2} " ~ = o  (14) 

In order to simplify the evaluation of  the above expression, we used the 
following recursion proposed by ANDERSON (1978) 

Dac = (1 -]KM_ll2)DM_I --le~_ ~ [M]] 2 --lebM_l[N]] 2 (15) 

where D is the denominator in eq. (14). 
After determining the reflection coefficients from equations (12)-(15) we can 

determine a, efac, e~,  and the autocorrelation from the quantities of ( M -  l)-th 
order. 

Following a similar iterative process we can evaluate the interstation impulse 
response h. Comparing a set of equation (6) of  the M-th order with that of the 
( M -  l)-th order we obtain 

hac [m] = hac_, [m] + LM_, aM (M -- m) (16) 

for 0 < m < M and hM_ 1 [M] = 0 while L is the corresponding reflection coefficient 
as above. 

Thus, eq. (2) yields 

Sac [n] = SM_, [n] -- LM_ 1 ebM [hi (17) 

by minimizing the sum of squares S[n] over the time interval 0 ~ n < N in a similar 
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way as above we have 

Lu- ,  = {.=~oS~-~[n]e~[n]}/{ ~=oeb [n]2 } (18) 

and by combining the two iterative processes derived above with the following 
initial conditions 

N N 

R[0] = E xt[n], c [ 0 ] - -  E x,[n]y,[n], ao[0] = 1 
n=0 n=0 

ho[0] = C[O]/R[O] 

ef[n] = eb[nl = x ,  [n] 
(19) 

S0[n] =y,[n] -ho[0]xt[n], n =0, 1 , . . . ,  N 

we can evaluate the required interstation impulse response. 
In general, the above procedure produces accurate AR estimates for the data 

which are truly AR (NUTTALL, 1976). For sinusoidal data, however, some bias in 
the estimate may occur (CHEN and STEGEN, 1974; KAVEH and LIPPERT, 1983). 
Although significant bias has not been observed during the present analysis, we 
have incorporated into the processing scheme the following data, adapting a 
weighting procedure proposed by HELME and NIKIAS (1985) 

n--1 
WM--I[n] = E Ix[g][ for M > 2 (20) 

k = n - - M + l  

which represents the common data energy in the forward and backward linear 
prediction errors eYM[n] and e~[n - 1] at time index n. 

4. Application to Synthetic Seismograms 

Consider a dispersed and attenuated wave registered at stations S1, $2 (Figure 
1), separated a distance r apart. If A l(o~) is the wave amplitude at station S1, then 
the following expression obviously describes the wave at station $2 

f(t, r) = (1/2n) A2(~o)exp[i(ogt -kr)] do 
co 

= (1/2r 0 {A l(~o)exp- [a(co) + iog/c(co)]r}exp(iogt) do9 
oo 

(21) 

where a(co) is the attenuation parameter and c(o) is the phase velocity. 
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Expressing eq. (21) in terms of the quality factor Q and frequency f, we obtain 

f(t, r) = {A l ( f )exp-[gf /Q( f )u( f )  + i2r~f/c(f)]r}exp(i2~ft) df (22) 
c o  

where u(f) is the group velocity. This equation was used to generate synthetic waves 
in order to verify the previously described computational approach. 

For simplicity, a one-cycle triangle wave with a period of 20 sec (Figure 3a), was 
dispersed according to the group and phase velocity curves of Figure 2. These curves 
were constructed by fitting the 7th degree polynomials to surface wave dispersion 
data from the Canadian shield (e.g., DEAN, 1986). 

The obtained waves at distances of 2500 km and 500 km from the source and for 
an attenuating medium of constant Q = 200 are shown in Figures 3b and 3c, 
respectively. 

The corresponding amplitude spectra, as were obtained from conventional FFT 
analysis and from the previously described AR analysis, are shown in Figures 4a, 
b and Figures 5a, b for stations S1 and $2, respectively. 

The AR spectra were calculated assuming three different model orders. It is ob- 
vious that too low an order resulted in a smoother estimate, while too large an order 
increased the resolution and introduced some spurious details into the spectrum. 

Next, an attempt was made to recover the Q value from synthesized waveforms 
at S1 and $2, using the formula 

Q = [rcfr/u(f)]/[In(H(f))] (23) 
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Figure 2 
Group and phase velocity curves for the Canadian shield used in the present work. 



436 G.-Akis Tselentis PAGEOPH, 

where u(f) is the group velocity and H(f) is the amplitude spectrum of the 
interstation impulse response. 

Gaussian random noise with zero mean and a standard deviation of 10% of 
mean absolute amplitude of the synthesized signals were added and Green's 
functions were calculated from (a) Fourier spectral division, (b) AR spectral 
division, (c) Wiener deeonvolution and (d) AR deconvolution. 
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(a) Fourier amplitude spectra, (b) MEM amplitude spectra at station 1, with three model orders. 
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Figure 5 
(a) Fourier amplitude spectra, (b) MEM amplitude spectra at station 2, with three model orders. 

In the last case, the correlation functions of the synthesized seismograms were 
calculated from the previously described algorithm. Both Wiener deconvolution and 
AR deconvolution recovered successfully the initially assumed Q value of 200. This 
is clearly shown in Figure 6. 

Fourier amplitude spectral division resulted in considerable scatter of the data, 
due to the noise, and we were not able to recover the initially assumed Q value. On 
the other hand, AR spectral division resulted in a relatively stable determination of 
Q values (Figure 7), particularly for the lower models. The higher orders tend to 
oscillate around a mean value which was the correct Q value. This result is not 
surprising since an AR process is equivalent to a zero-lag inverse filter and the 
instabilities due to noise are being reduced during the application of the filter. 

Figure 7 suggests that we might be able to recover Q directly from AR spectral 
ratios by averaging the results obtained from lower order models. 

The corresponding auto- and cross-correlation functions are shown in Figure 8. 

5. Application to Real Data 

The proposed technique was applied to a surface wave path from an event 
occurring under Baffin Island, Canada on 2 December 1970 (11:03:09.8; 
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Comparison between Wiener and AR deconvolution. 

68.4N,67.4W, m = 4.9, depth = 8.6 km), crossing the Canadian shield between 
stations SCH and HAL of the Canadian seismic network (Figure 9). 

Figures 10a, b show the transverse component seismograms of the two stations 
(after deconvolving the instrument). Prior to processing, the digitized data were 
passed through a Butterworth bandpass filter with frequency range 0.02-0.15 Hz 
(in forward and reverse directions to avoid phase shift). 

Figure 11, shows the obtained results from AR spectral ratios and Wiener 
deconvolution, while Figure 12 compares the results from AR deconvolution, 
Wiener deconvolution and average AR12, ARI6 and AR20 spectral ratios. The 
obtained interstation Green's function is shown in Figure 13. Judging from these 
figures it is obvious that both AR deconvolution and AR averaging provided 
relatively smooth estimates of Q which compare favorably with the Q-values 
obtained from Wiener (spectral) deconvolution. 

6. Conclusions 

In this paper we have applied an autoregressive approach to the problem of 
determining the interstation attenuation parameters from surface waves. 

A normal equation for an estimator of the interstation Green's function was 
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derived according to Wiener's optimum theory, and it was solved using a processing 
scheme based on Burg's algorithm. 

Tests conducted using synthesized and real data showed that the technique gives 
results similar to those obtained from Wiener deconvolution. The analysis showed 
also that after a careful selection of the orders of the AR model, it is possible to 
obtain reliable interstation transfer functions by simply averaging the lower order 
AR spectral ratios. Since no data-invariant time window is used, the estimated 
interstation Green's function gives us significant information on both the amplitude 
and the phase spectra of the system. 

All the software was implemented on an IBM AT computer. 
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Comparison of the Q-values obtained from Wiener deconvolution, AR deconvolution and the average 
of AR spectral ratios. 
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Interstation Green's function. 
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