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Abstract 

      

Complex application domains involve difficult pattern classification problems. The 

present paper introduces a model for the MMI-attenuation relation and its dependence 

upon engineering ground motion parameters, which is based on artificial neural net-

works (ANN) and Genetic Algorithms (GA). The ultimate goal of this investigation is 

to evaluate the applicability of ground-motion attenuation relations, developed for a 

host region, in a target region, by training an ANN, using the seismic patterns of the 

host region. The ANN learning is based on supervised learning using existing data 

from past earthquakes.  The combination of these two learning procedures (GA and 

ANN) introduces a new method in pattern recognition with seismological applica-

tions. The performance of this new  GA-ANN regression method has been evaluated 

on a Greek seismological database with satisfactory results. 
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Introduction 

A major problem encountered in engineering seismology is to assess the damage po-

tential of an earthquake, expressed by the distribution of seismic intensities from well 

known recorded ground motion parameters (e.g. Tselentis and Danciu, 2008; Danciu 

and Tselentis, 2007). However, a physically based ground-motion measure is needed 

for engineering purposes. With the advent of instrumental seismology, the relatioship 

between the  intensity and the ground-motion parameters has become a topic of in-

creasing interest.  

The objective in the present investigation, is to uncover hidden complex and often 

fuzzy relations between the engineering ground motion parameters and macroseimic 

intensity, in the form of input/output dependencies. The emergence of neural network 

technology (Haykin, 1999; Bishop, 1996), offers valuable insight to confront with 

these complicated problems. In this context, neural networks can be viewed as ad-

vanced mathematical models for discovering complex correlations between variables 

of physical processes from a set of perturbed observations.  

 

Engineering seismological parameters 

The quantification of  ground motion requires a good understanding of the ground 

motion parameters that characterize the severity and the damage potential of the 

earthquake and the seismological, geological, and topographic factors that affect 

them. Parameters related solely to the amplitude of the ground motion such as the 

peak ground acceleration (PGA) and the peak ground velocity (PGV) are often poor 

indicators of structural damage. 
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Because structure or equipment damage is measured by its inelastic deformation, the 

earthquake-damage potential depends on the time duration of motion, the energy ab-

sorption capacity of  the structure or equipment, the number of strain cycles, and the 

energy content of the earthquake. Therefore, for engineering purposes, parameters 

that incorporate in their definition the previously mentioned characteristics are more 

reliable predictors of the earthquake’s damage potential.   The most frequently used 

ones are Arias intensity (Ia),   acceleration response spectrum (Sa), and cumulative 

absolute velocity (CAV).  The Cumulative Absolute Velocity (CAV) is defined as 

 
0

( )
t

CAV a t dt= ∫       (1) 

where t is the total duration of the record, and a(t) is the acceleration time history. 

CAV defines a simple energy-related bound of the response velocity of a SDOF (Sin-

gle-Degree-of-Freedom) system subjected to seismic excitation, (Ahmadi, 1986). Ac-

cording  to its definition CAV accounts for the contribution of both the amplitude and 

the duration of the motion. 

The Arias Intensity (Ia) introduced by Arias, (Arias, 1970), is a measure of ground 

motion intensity corresponding to the total energy stored at the end of a family of lin-

ear undamped or moderately dumped oscillators with varying frequency and can be 

expressed as,  

0
I Edω

∞

= ∫          (2) 

where E is the energy dissipated per unit weight of a structure and ω is the frequency.     

 

Data set 
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The strong-motion records used for the present investigation have been provided by 

the European Strong Motion Database (Ambraseys et al., 2004) and are presented in 

Figure 1. More details about these data can be found in (Danciu and Tselentis, 

2007). The macroseismic information is available partly from the digital database of 

the web site for European strong motion data and partly estimated separately by us 

from the macroseismic data provided by the Geodynamic Institute of the National Ob-

servatory of Athens (Kalogeras et al., 2004). The general criterion was to allocate at 

each station the nearest MMI values within an uncertainty of one unit to every station. 

If more than one MMI value was observed near the station location at equal distance, 

the average of the values was used (Tselentis and Danciu, 2008). 

 

Artificial Neural Network 

There are several well-known categories of ANN like the feed-forward neural 

networks, which are including Radial-Basis Function (RBF) networks, or multi-layer 

perceptrons.  For example, RBF networks exploit the Tikhonov’s regularization (Pog-

gio and Girosi, 1990a; Poggio and Girosi, 1990b; Girosi, 1998), while Multi-Layer 

Perceptrons (MLP) are well-known as universal approximators (Hornik et al., 1989), 

and, they have a simple structure easier to interpret in comparison with other neural 

networks. Figure 2 shows a simplified view of a feed-forward ANN. 

It consists of a network of simple processing elements (artificial neurons) which 

are organized in several layers: an input one (which has the number of neurons linked 

to the dimensionality of the input), one or several hidden layers and an output layer. 

The hidden layer provides a representation for the inputs. After the inputs are 

weighted they are summed up and passed through a function f.  A representation of 

the NN used in the present investigation is shown in Fig. 3, with the 9 inputs being the 
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engineering seismological ground motion parameters. The architecture containing 

multiple hidden layers is more powerful than single-layer networks. The units (neu-

rons) have their activation function characterized by a nonlinear function (like the 

sigmoid function in Fig. 4). This function maps the output of the function to its input 

and this is expressed as 

∑
=

+=
R

i
ii pWbfY

1

)*( ,         (3) 

where b is the bias, and Wi (i = 1,…,R) is a weight corresponding to input pi.  

We have considered this problem of automatic MMI assessment based on ground 

motion parameters as part of a larger category of problems encountered in Pattern 

Recognition, (Poggio and Girosi, 1990a),(Duda and Hart, 2001)]. In the present inves-

tigation we consider the following four  phases   

-     feature extraction 

- classification 

- pre-processing and optimization 

- regression  

Feature extraction 

During this phase, we combined the enhanced selection offered by GA  with the  per-

formance of an ANN  as a classifier. At first, we used all nine possible input parame-

ters that characterize an earthquake  ground motion at a site corresponding to an MMI 

value. These measures are M, log(R), PGV, log(PGV), Sa, PGA, log(PGA), Ia and 

CAV (Fig.3).  

During this procedure we use 9-bits strings quantification with binary field-

values as  

M logR Sa PGV logPGV PGA logPGA Ia CAV 
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For example, the 3 parameters string [logR, Ia, CAV] is represented as the string:  

010000011. Like in the natural selection (the genes of animals or plants) the muta-

tions and crossovers are allowed (this time, between strings). A genetic algorithm was 

used to generate populations of strings out of the 512 possible combinations (from 

000000000 to 111111111). The total number of available strings (the equivalent of 

'chromosomes') at a certain time, (i.e. after the Max_No_Generations),  is called 'the 

genome',  and was evaluated by an ANN implemented as a k-NN (k-Nearest Neigh-

bor). This was achieved by comparing the corresponding MMI (the outputs)    with 

the selected inputs (out of the nine  possible ones) represented by the strings generated 

by the genetic algorithm. In our implementation we have allowed a population size of 

20, and in this case, the population size is the maximum number of  chromosomes 

(strings) allowed in a  generation. 

Classification 

The second phase, dealing with the  classification, is implemented by a k-NN 

type  neural network. The k-nearest neighbors algorithm (k-NN), is a method for clas-

sifying objects based on closest training examples in the feature space. k-NN is a type 

of instance-based learning, or lazy learning where the function is only approximated 

locally and all computation is deferred until the classification.  

In the machine-learning community, the instance-based learning -IBL (Aha et 

al., 1991) also known as memory-base learning is a family of learning algorithms that 

instead of performing explicit generalization, compare new instances with instances 

which have been seen during the training. It is called instance-based because it con-

structs hypotheses directly from the training instances themselves. A direct conse-

quence is that the complexity of the problem grows with the amount of the data avail-

able for training and testing. 
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 From the data set of 310 data values some were left for testing, while most of 

them were considered for training. We have used this approach (GA-ANN with IBL) 

in order to avoid  data changes produced by normalization techniques. The Euclidean 

metric is used to assess distances between training/ testing epochs. 

In our approach, we used one of the simplest examples of IBL, the k-nearest 

neighbors classifier (k-NN), and it's Java implementation based on Weka-toolbox 

(Witten and Frank, 2005). k-NN is amongst the simplest machine-learning  algo-

rithms. An object is an instance out of the 310 data values and is given in the features 

space, which is found to be the 5 parameters string: [M, log(R),PGA, Ia , CAV]. It is 

classified by a majority vote of its neighbors with the object being assigned to the 

class most common amongst its k nearest neighbors. 

Thus, the k-NN classifier takes the optimum combination of inputs (from the nine 

mentioned) and, therefore only 5 inputs [M, log(R), PGA, Ia and CAV] were selected. 

The k-NN will perform the classification only for those columns (the 1st, 2nd,6th, 8th 

and 9th) based on quadratic error criteria. 

 

 

Pre-processing and optimization 

     In the previous two phases we considered all inputs as they were, but for the proc-

essing purposes, we convert all inputs into integers by multiplying them with powers 

of 10 (Härdle et al., 1995; Mierswa et al., 2006). 

     Candidate solutions to the optimization problem play the role of individuals in a 

population, and the fitness function determines the environment within which the so-

lutions "live" (e.g. cost function). Genetic algorithms are a particular class of evolu-

tionary algorithms -EA, (Blickle et al, 1995),(Fonseca et al,1995) that use techniques 
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inspired by evolutionary biology such as inheritance, mutation, selection, and cross-

over (also called recombination).  

In other words, a GA is quantifying the information (the parameters of the k-

nearest neighbor classifier) in the form of strings (the chromosomes), and through the 

EA only the fittest chromosomes survive over the generations of the evolution. There-

fore, an important parameter for the proposed, GA-ANN method in this investigation 

was the Max_No_Gener in which the GA algorithm was allowed to evolve so to 

achieve the optimum solutions. 

In our case there are several parameters that have to be modified (fine-tuned) in 

order to achieve an optimum behavior of the classifier- the neural network (like the 

number of hidden layers and the number of neurons in each hidden layer). 

After finding the optimum Max_No_Gener parameter the other parameters of the 

method were determined accordingly. These are: k, the optimum number of neighbors 

and the selection scheme or the size of the tournament. In doing this k was found by a 

trial-and-error procedure to have a value of 2.   An advantage of the selection mecha-

nism of a GA, (Tobias and Lothar, 1995) is its independence of the representation of 

the individual, as only the fitness values  of the individuals are taken into account.  

A fitness function is a particular type of objective function (i.e. the function con-

sidered for the optimization procedure) that prescribes the optimality of a solution, 

(the solutions are represented as chromosomes), in a genetic algorithm, so that the 

particular chromosome may be ranked amongst all the other chromosomes from the 

genome. Chromosomes which are found to be 'more optimal' are allowed to breed (i.e. 

further binary combinations will be created by the GA on the 'skeleton' of these 'more 

optimal' ones) and mix their datasets by any of several available techniques, produc-

ing a new generation of chromosomes that will hopefully be better.  The 'mix' in our 
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case can be represented by taking first 4 digits from one 'optimal' string and the last 5 

digits from an other 'more optimal' one and in this way create a new chromosome (9-

digits string) that can hopefully perform better in the k-NN classification. This simpli-

fies the analysis of the selection methods and allows a comparison that can be used 

for all kinds of genetic algorithms.  

One of the frequently used  selection schemes is "the tournament selection". In 

this scheme we run a "tournament" among a few individuals chosen at random from 

the population (i.e. from the genome) and select the  one with the best fitness as the 

winner for crossover that is adjusted by varying the tournament size.  

In the theory of genetic algorithms, the crossover is the genetic operator used to 

modify the programming of a chromosome or a group of chromosomes from one gen-

eration to the next. It is the analogous of the reproduction and biological crossover (in 

the nature) upon which the simplified theory of GA in computational intelligence was 

built.  

First, a single crossover point on both parents organism's strings is selected 

(avoiding obviously the extreme points). All data beyond that point in either organism 

string are swapped between the two organism strings. The resulting organisms are the 

children (offspring) as is shown in Fig.5. 

If the tournament size is larger, weak individuals (chromosomes for which the 

objective function, i.e. the error has a higher value) have a smaller chance to be se-

lected for breeding, crossover and perpetuation in the next generations. The perform-

ance was quantified by RMS criteria and square error. A flow chart describing all the 

above operations is presented in figure 6. 

In order to validate the performance of the above mentioned GA-ANN selection 

schemes, we selected a validation scheme based on the regression performance. Re-
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sults for the selection of the 1st optimum parameter, from those described above, 

(Max_No_Gener) are presented in Table 1. Judging from the values depicted in Table 

1 we have the following cases: 

First, an "underdetermined solution", which results in values of Max_No_Gener 

in the range 25-70. This is rejected because GA need a minimum number of genera-

tions in order to obtain the optimum fitness among all available individuals.  This op-

timum fitness is given (as input to the genetic algorithm) by the k-NN neural-network 

classifier. For example, let's suppose that we have to compare the following two situa-

tions: 

In the case that 75 are the maximum-number of generations, we obtained as 'fit-

test'  the string S1, where S1 is given by the GA+k-NN algorithm and corresponds to 

the combination [M, log(R), log(PGV), Ia, CAV]. This is represented as 11000011. 

The fittest' chromosome is considered one for which the objective function has an ex-

treme value (in our case, the objective function is the square-error of the k-NN type of 

ANN, and so, the objective function must have a minimum value). 

If we  consider the  last generation, (the 80th in our case), with string S2, as the fit-

test one, corresponding to the combination (M, log(R),PGA, Ia, CAV) and represented 

as 110010011. In this situation, S2 is retained as having the best fitness, since the out-

put of the k-NN classifier for S1 is given by the squared-error of: 0.329 +/- 0.170   and 

for S2, by the 0.327 +/- 0.164, i.e. both the error and it's standard deviation are higher 

in the case of  S1.  

Second, a higher than optimum Max_No_Gener (90) which is rejected due to 

worse regression performance (higher RMS error). Finally, the solution with 

Max_No_Gener =94 was rejected since it  practically took almost all input parameters 

(was a trivial solution). 
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Third, an optimum value of Max_No_Gener equal to 80 (minimum RMS, square 

and absolute errors) and was not under-trained like case (1). 

In this case, the optimum selected input parameters are: M, logR, PGA, Ia and 

CAV. These are the parameters which will be used to express MMI throughout a re-

gression process. Absolute error performed like the best harbinger (descriptor) out of 

the 3 types of errors was used for validation. 

Regression 

In the case that the existing data are not sufficient for the analysis (since we have 

to use part of the data  for validation and test sets), it is common to use the cross-

validation or rotation estimation method, (Kohavi, 1995). 

This is a technique for assessing how the results of a statistical analysis will gen-

eralize to an independent data set. It is mainly used in cases where the goal is predic-

tion, and one wants to estimate how accurately a predictive model will perform in 

practice. Cross-validation involves partitioning a portion of the  data into complemen-

tary subsets, performing the analysis on one subset (called the training set), and vali-

dating the analysis on the other subset (called the validation set or testing set). For rel-

atively larger datasets a usually higher cross-validation is used (25 in our case). 

Next, the selected optimum  input parameters [M, logR, PGA, Ia and CAV] are 

considered as X multivariate inputs, and the response variable Y as the MMI-

attenuation. In order to calculate the coefficients that are linking Y to the 5-

dimensional X variable we used linear regression described by the equation (Härdle et 

al., 1995).  

∑
=

+=
5

1
0 *

i
ii XbbY      (4) 

where b0 is the intercept and b1 ,…, b5 are the coefficients for the ground parame-

ters in the MMI equation. 
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The obtained b  values  are presented in Table 2, and the results of the ANOVA 

statistical test are shown in Table 3. Thus, the relation which describes MMI as a 

function of [M, logR, PGA, Ia CAV] is 

MMI=8.824+0.417M-7.960logR+0.380PGA+1.105Ia-0.551CAV 

 Fig.7 shows the time series corresponding to the original data and the results of 

the regression analysis. For the GA-ANN selection scheme we used a Java based im-

plementation, built around the Weka (the IBk lazy learner) data-mining system, (Wit-

ten and Frank, 2005).  

5. Conclusions 

In this research, we presented a model of MMI attenuation relation and its dependence 

upon engineering ground motion parameters, based on ANN and GA. The perform-

ance of this new regression approach has been tested on a Greek strong motion data 

base with satisfactory results.  

We note that not all the features selected in the GA-ANN approach have the same 

influence on the MMI-attenuation. An approach based on Evolutionary Algorithms 

can be useful in weighting the importance of those features. Also a new type of neural 

networks (Evolutionary NN) can be used to replace the classical k-NN that we've used 

in the current paper.  If we  implement also and an expert system, making the analysis 

of the results of feature selection presented in Table 1, we end up with a real-time sig-

nal processing system, to be used in seismology and not only.  
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Captions of tables 

Table 1: The parameters retained by the GA-ANN selection algorithm and the 

corresponding regression performance (columns 2 and 3). 

Table 2: The parameters for the linear regression obtained by the program 

XploRe for the input data selected by the GA-ANN proposed methodology. 

Table 3: The statistical parameters obtained for the linear regression using the 

ANOVA test. 

Captions of figures 

Figure 1: Epicentral distribution of the earthquakes used in the present analysis. 

Figure 2: General topology of a feed-forward ANN with one hidden layer. 

Figure 3:  Topology of the feed-forward ANN (of k-NN type) used in the present 

investigation. 

Figure 4: The graph shows two classical nonlinear activation functions. 

Figure.5: One point crossover. 

Figure 6: Flowchart showing the sequences of the feature-selection and classifi-

cation. 

Figure 7: The output of the regression algorithm (in red) and the original MMI 

data (in blue) for the 310 data points considered. 
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Max_No_Gener. Sq error RMS 

error 

root_relative_ 

squared_error

The retained params 

75 0.329 +/- 

0.170 

0.553 +/- 

0.152 

0.608+/- 0.178 M,logR,logPGV,Ia,CAV 

80 0.327 +/- 

0.164 

0.546 +/- 

0.169 

0.607+/-0.195 M,logR,PGA,Ia,CAV 

50 0.321 +/- 

0.165 

0.545 +/- 

0.155 

0.613+/- 0.224 M,logR,Sa,Ia,CAV 

90 0.339 +/- 

0.231 

0.548 +/- 

0.196  

0.618+/-0.189 logR,Ia,CAV 

94 0.324 +/- 

0.194 

0.541 +/- 

0.176 

0.608+/-0.194 M,logR,Sa,logPGV,PGA,Ia,CAV 

Table 1 

 

PARAMETERS Beta SE StandB t-test P-value 

 

b[ 0,] 8.8236 4.0481 0.0000 1.439 0.1513 

b[ 1,] 0.4173 0.9553 0.2733 0.437 0.6625 

b[ 2,] -7.9601 12.2908 -0.4084 -0.648 0.5177 

b[ 3,] 0.3801 0.4533 0.1499 0.839 0.4024 

b[ 4,] 1.1046 0.5022 0.7718 2.200 0.0286 

b[ 5,] -0.5508 0.5965 -0.2046 -0.923 0.3566 

Table 2 
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 A  N  O  V  A                   SS      df     MSS       F-test   P-value 

__________________________________________________ 

Regression                   155.893     5    31.179      67.556   0.0000 

Residuals                      140.304   304     0.462 

Total Variation              296.197   309     0.959 

Multiple R       = 0.72548 

R2              = 0.52632 

Adjusted R2     = 0.51853 

Standard Error   = 0.67936 

Table 3 
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Fig. 7 
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