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Abstract The investigated area, located around the Rio-Antirrio Strait, Central
Greece, has been the target of a seismic microzonation campaign. Seventy seismic
stations have been deployed for a period of 4 months, recording in continuous mode.
Despite the high level of urban noise, we compiled a data set of 95 earthquakes re-
corded at most of the 70 sites. By employing the attributes of self-organizing maps
(SOMs), a quality-control and signal-improving method is proposed. A SOM (Koho-
nen, 1997) is a type of unsupervised neural network. The main property of SOMs
utilized is that while the competitive learning algorithm on whom this method is based
maps the input data on an n-dimensional grid of neurons, the topological relations
(proximity of patterns in input data) are preserved in the output space. SOM is applied
to the horizontal-to-vertical spectral ratios (HVSR) of every weak event analyzed for
each station separately and allows a better evaluation of the stability of the HVSR.

Introduction

The investigated region, surrounding the Rio-Antirrio
Strait, is one of the most active seismic areas in Greece be-
cause it is under continuous tectonic deformation (Tselentis
and Makropoulos, 1986; Tselentis et al., 2007, 2010). The
recent completion of a 3-km cable bridge spanning the Strait
(the longest in the world of its kind) has resulted in an ex-
plosion in commercial activities and population settlement.
Local variations of earthquake ground motion are expected
in the region because the subsoil structure is characterized by
important lithological heterogeneity and widespread soft-soil
conditions. In this context, the evaluation of the local soil
conditions and the study of the site effects are crucial steps
towards a better seismic risk assessment for the area.

It is a well-documented phenomenon that earthquake
ground motion can be amplified by local site conditions
(e.g., Milne, 1898; Kanai, 1951; Borcherdt, 1970; Aki, 1988;
Bard, 1999). When seismic waves emerge from the base of
more competent rocks into the less-competent uppermost
soils, groundmotion can change dramatically. The impedance
contrast near the surface affects the frequency-amplitude
content of earthquake ground motion. It can also change
the duration, one of themost important parameters controlling
the damage of earthquake ground motion. Examples from
Loma Prieta (1989), Guerrero Michoacan (1985), Northridge
(1994), Kobe (1995), Armenia (1999), Kocaeli (1999),
Athens (1999), Bhuj (2001), and Bam (2003) earthquakes
have been extensively cited to illustrate the role of surface
geology. This underlines how important it is to account for

site effects in the design of new constructions, in the retrofit-
ting of existing structures and in land-use planning.

Many investigators have evaluated site response func-
tions from moderate to weak motions of earthquakes (e.g.,
Jongmans and Campillo, 1993; Carver and Hartzell, 1996;
Hartzell et al., 1996; Steidl et al., 1996; Lachet et al.,
1996; Toshinawa et al., 1997; Mucciarelli et al., 2003; Za-
slavsky et al., 2005; Di Giulio et al., 2005; Mandal et al.,
2005; Improta et al., 2005; Tselentis et al., 2010), exhibiting
a rather good correlation with surface geology, and in many
cases these studies are able to predict site resonance frequen-
cies, whereas there is a lower reliability on the derived
amplification factors (Bard, 1999; Haghshenas et al., 2008).
The task of the present experiment is to understand the seis-
mic response of the Rio-Antirrio region and identify parts
exhibiting similar ground motion behavior as part of a
microzonation investigation. Due to the high urban noise, we
examined the use of self-organizing maps (SOMs) to evaluate
the stability of the calculated horizontal-to-vertical spectral
ratios (HVSR).

Geology

The study area covers the Rio-Antirrio strait (Fig. 1),
which is located in the northern part of the Peloponnesus.
The Corinth and Patras rifts are linked by transfer faults
in the Rio-Antirrio Strait (Doutsos and Poulimenos, 1992).
After Middle Miocene, the whole northwestern Peloponne-
sus area was uplifted and extended. During this extension,
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three asymmetric grabens were formed: the Corinth,
Rio-Antirrio, and Patras grabens.

The asymmetry of the grabens is largely induced by
north-dipping master faults, which trend parallel to the coast-
line of the north Peloponnesus (Doutsos and Poulimenos,
1992). In the Quaternary, rifting propagated westward until
it reached the Rio-Antirrio graben. The Rio graben, formed
by movement of preexisting northeast–southwest trending
faults, reactivated in the Pliocene (Doutsos et al., 1985).
Changes in predominant stress directions at this time led to
the Rio graben acting as a transfer zone between the existing
Patras and Corinth grabens (Tselentis and Makropoulos,
1986; Doutsos et al., 1988).

The three-dimensional (3D) tomographic velocity inver-
sion in this area has been extensively studied byTselentis et al.
(2007). The primary structural features are the following. Low
velocity top geological layers corresponding to Quaternary
and Neogene sedimentary formations. The thickness of these
formations in the target area is approximately 500–600m. The
Alpine Basement is characterized by limestone outcroping in

the northwestern part of the study area, where the limestone
Klokova Mountain sits, and also in the southern part (Pana-
haikonMountain). In the northern and northeastern part of the
study, the flysch formations of the Pindos are present.

Data

The acquisition campaign was carried out between
December 2003 and May 2004. A total of 70 stations were
used in the whole network. Sixty of the stations were
deployed in the Rio-Antirrio area all over an approximately
500-m grid (Fig. 1). In addition, ten peripheral stations were
deployed for the better location control of the events occur-
ring at the outskirts of the investigated area.

The instrumentation consisted of Earthdata PR24 data-
loggers connected to LandTech S100 three-component sen-
sors with 1 Hz natural frequency and flat response between 1
and ∼70 Hz.

A total of 220 events were recorded, and 95 were
selected (Fig. 2, Table 1) for the present investigation on the
basis of the best signal-to-noise ratio (SNR) and number of

Figure 1. Geological map of the region with the station positions indicated. The color version of this figure is available only in the
electronic edition.
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stations that have been recorded. In weak-motion studies of
this kind, it is important to use as many data as possible, but it
is well known that instabilities might be induced when we
involve in the analysis low SNR events that have been
recorded only in a subset of the stations.

The distribution of the back-azimuths spans a broad
circular sector covering almost all directions (Fig. 3). For
example, Figure 3a illustrates the coverage as a function
of the event’s magnitude for the selected station 08. Figure 3b
depicts the azimuthal coverage provided by the recorded
events as a function of their epicentral distances, which
varies between 0.5 and 10 km. Examples of recorded
seismograms at 8 different locations for event 1 in Table 1
(M ~1.70) are shown in Fig. 4.

Methodology

Spectral Analyses

Because there is no downhole array in the investigated
area, we have decided to use single-station estimates of the
HVSR. This approach is quite useful in estimating the site
fundamental frequency (Nogoshi and Igarashi, 1971; Naka-
mura, 1989; Lermo and Chavez Garcia, 1993; Mandal et al.,
2005; Tselentis et al., 2010).

The method consists of calculating the spectral ratio
(HVSR) between the combined smoothed horizontal compo-
nents and the smoothed vertical component. Bonilla et al.
(2002) noted that a significant site response can be associated
with the vertical component resulting from S-to-P-wave con-

version at the weathered granite boundary, and that this
violates the basic assumption behind the HVSR method.
Nevertheless, this methodology has been widely used to
estimate site response of many areas, although there is not
unanimous agreement yet among seismologists regarding
the accuracy of the methodology.

Figure 5a shows the normalized, vertical-component
seismograms as recorded at 15 selected stations for event
72 in Table 1. For the analysis, a time window of 10.24 s
(consisting in this case of 1024 samples) was used and
started 0.5 s before the S arrival for all three components
(Fig. 5b). The S arrivals were manually picked, and even
picks with lesser accuracy were utilized as only the approx-
imate onset of S waves was needed; also the time length was
chosen in order to contain most of the high amplitude direct
Swave energy. Bonilla et al. (1997) pointed out that using
longer times results in better spectral resolution at the cost
of including in the spectra scattered and reflected energy
as well as surface waves. Field and Jacob (1995) found no
statistical variations in site response computed with spectra
of different time-window lengths. On the other hand, Castro
et al. (1997) suggested that S waves can be contaminated by
surface waves at larger epicentral distances, which recom-
mends the use of variable time windows for the estimation
of HVSR using S waves.

The selected part of the time traces was detrended, a 5%
tapering was applied, and for each component the spectrum
was calculated. Each spectrum was smoothed using a 0.4-Hz
length Parzen window. In order to obtain a site response for
each site, a resultant horizontal component was calculated
following Mandal et al. (2005) as the average of the spectra
of the two horizontal components and divided by the spec-
trum of the vertical component following equation (1):

Rhv �

h
�

����������������������������������������
SNS�f�2 � SEW�f�2

p
�=2

i
Sv�f�

: (1)

The final step is gathering all the spectra for all the events in
each site and the calculation of the average HVSR (Fig. 6). In
order to have a quality control and calculate a weighted aver-
age of the HVSRs, we decided to use the SOMs methodology
(Kohonen, 1997).

Kohonen Neural Networks

SOMs, or Kohonen neural networks, is a type of unsu-
pervised artificial neural network (Kohonen, 1997). The
structure of a SOM neural network is composed of two
layers: an input layer and an output one (or Kohonen layer).
The output layer consists of nodes known as neurons. The
aim of this method is to transform the input vectors with
arbitrary dimensions into generally 2D simplified maps
(Klose, 2006).

One basic distinction between “classical” neural net-
works and SOMs is their ability to utilize an unsupervised
learning method, known as competitive learning. As a result

Figure 2. Hypocenters of used events.
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Table 1
Parameters of the Microearthquakes That Were Used in the Present Investigation

Year Month Day Hours Minutes Seconds Latitude Longtitude Depth Magnitude

2003 Dec 24 01 01 10.380 38.2985 21.7648 9.56 1.70
2003 Dec 25 10 30 48.030 38.3072 21.7597 9.23 1.35
2003 Dec 28 02 12 10.930 38.3538 21.7302 6.45 1.35
2004 Jan 09 15 05 21.740 38.3355 21.8243 8.29 1.07
2004 Jan 24 02 32 17.880 38.3118 21.7500 10.90 2.27
2004 Jan 24 08 20 40.730 38.3032 21.7385 10.67 1.76
2004 Jan 24 08 20 58.180 38.2993 21.7215 10.80 1.67
2004 Jan 24 09 41 50.980 38.3057 21.7460 11.97 1.62
2004 Jan 24 18 43 58.410 38.3063 21.7400 12.52 1.55
2004 Jan 24 21 04 34.640 38.2932 21.7277 9.19 1.88
2004 Jan 26 14 32 12.550 38.3122 21.7137 10.76 1.74
2004 Jan 27 08 35 3.250 38.3685 21.7935 4.85 1.38
2004 Jan 27 10 08 59.150 38.3130 21.7783 4.44 1.67
2004 Jan 30 21 48 40.500 38.3528 21.7643 4.55 2.19
2004 Jan 31 01 14 27.440 38.3180 21.7482 12.08 2.26
2004 Feb 01 22 52 21.460 38.3580 21.7380 5.87 1.46
2004 Feb 02 21 23 9.540 38.3780 21.7515 5.64 1.51
2004 Feb 03 22 54 2.060 38.3512 21.7352 6.51 1.44
2004 Feb 13 06 20 54.260 38.3953 21.7818 3.29 1.81
2004 Feb 13 18 41 53.540 38.3723 21.7597 5.10 1.49
2004 Feb 13 18 48 41.020 38.3717 21.7645 5.29 1.27
2004 Feb 14 21 04 51.950 38.3635 21.7623 4.78 1.27
2004 Feb 14 21 05 2.580 38.3622 21.7598 4.67 1.44
2004 Feb 19 01 10 22.280 38.3582 21.7943 4.61 1.96
2004 Feb 20 22 43 30.770 38.3552 21.7575 5.17 2.41
2004 Feb 20 22 59 19.130 38.3548 21.7475 4.69 0.97
2004 Feb 23 10 24 37.460 38.3512 21.7525 5.00 1.64
2004 Feb 26 21 41 1.910 38.3325 21.7600 5.27 1.51
2004 Feb 28 23 30 48.340 38.3337 21.7602 5.82 1.74
2004 Mar 01 02 52 11.010 38.3067 21.7787 4.53 1.41
2004 Mar 01 23 57 1.720 38.2612 21.7542 7.54 2.04
2004 Mar 02 02 50 15.420 38.3423 21.8080 3.37 1.41
2004 Mar 03 01 55 4.050 38.3048 21.7752 4.94 1.31
2004 Mar 03 20 37 59.170 38.3052 21.7725 5.00 1.93
2004 Mar 03 20 52 36.490 38.3072 21.7765 4.80 1.58
2004 Mar 03 22 21 32.740 38.3040 21.7727 5.07 1.47
2004 Mar 05 01 12 50.590 38.3003 21.7703 4.84 1.75
2004 Mar 05 02 19 53.930 38.2982 21.7722 5.24 1.72
2004 Mar 06 15 58 49.690 38.3057 21.7740 4.41 1.54
2004 Mar 09 02 03 51.050 38.3005 21.8432 0.30 1.26
2004 Mar 09 03 13 31.350 38.3022 21.8402 1.65 1.68
2004 Mar 10 09 22 29.760 38.3707 21.7957 4.86 1.88
2004 Mar 11 21 40 49.970 38.3270 21.8247 3.21 2.05
2004 Mar 12 01 02 13.800 38.3352 21.7663 6.02 1.62
2004 Mar 14 09 44 21.280 38.3620 21.7475 4.87 1.24
2004 Mar 14 10 16 41.150 38.3815 21.7500 3.54 0.96
2004 Mar 14 22 05 3.420 38.2933 21.7980 2.95 1.09
2004 Mar 15 23 05 23.630 38.3560 21.8193 4.33 1.53
2004 Mar 16 22 25 12.820 38.3065 21.7757 5.69 1.04
2004 Mar 16 22 25 12.940 38.3160 21.7857 5.15 0.85
2004 Mar 18 06 55 43.880 38.3127 21.7793 5.31 1.17
2004 Mar 18 17 19 22.270 38.3517 21.8233 4.32 2.33
2004 Mar 18 22 20 52.550 38.3478 21.8228 3.40 1.53
2004 Mar 18 22 35 55.190 38.3523 21.8280 4.72 1.62
2004 Mar 19 16 10 1.240 38.3492 21.8183 3.81 2.10
2004 Mar 19 22 35 31.150 38.3523 21.7438 6.39 2.49
2004 Mar 23 22 10 57.590 38.3295 21.8387 3.80 2.58
2004 Apr 05 12 04 58.570 38.3523 21.8190 4.95 1.68
2004 Apr 06 10 26 5.540 38.3618 21.7377 6.15 2.28
2004 Apr 08 02 25 4.360 38.2838 21.8092 4.24 1.54
2004 Apr 08 02 25 4.330 38.2892 21.8003 5.18 1.71

(continued)
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of this, SOMs do not require a priori information to function,
and they excel at establishing unseen relationships in data
sets (Penn, 2005). An important advantage of SOM is

the ability to preserve topological relations, that is, patterns
that are close in the input space will be mapped to neurons
that are close in the output space and vice versa. SOM

Table 1 (Continued)
Year Month Day Hours Minutes Seconds Latitude Longtitude Depth Magnitude

2004 Apr 08 16 15 49.410 38.3442 21.7778 5.70 2.56
2004 Apr 08 16 15 49.560 38.3390 21.7637 4.52 2.55
2004 Apr 09 14 05 24.420 38.3622 21.7862 6.45 2.53
2004 Apr 09 14 05 24.500 38.3540 21.7857 6.36 2.46
2004 Apr 11 21 24 23.130 38.3697 21.7410 6.43 1.81
2004 Apr 18 03 14 34.820 38.3350 21.7695 5.91 1.69
2004 Apr 21 15 34 9.760 38.3790 21.7993 4.68 1.73
2004 Apr 21 17 27 8.650 38.2805 21.7953 5.56 1.68
2004 Apr 22 18 25 14.230 38.3675 21.7462 6.03 1.30
2004 Apr 22 23 16 8.040 38.3423 21.7637 7.02 2.08
2004 Apr 28 07 26 58.750 38.3542 21.7472 6.69 4.19
2004 Apr 28 07 38 43.700 38.3562 21.7425 6.40 2.94
2004 Apr 28 07 45 19.130 38.3583 21.7385 6.38 1.97
2004 Apr 28 07 46 30.070 38.3590 21.7342 6.61 1.87
2004 Apr 28 08 04 38.780 38.3725 21.7417 6.03 1.38
2004 Apr 28 08 14 50.120 38.3660 21.7357 5.49 1.54
2004 Apr 28 08 45 38.120 38.3615 21.7437 6.32 1.88
2004 Apr 28 08 41 47.380 38.3597 21.7340 6.85 1.73
2004 Apr 28 08 50 46.410 38.3602 21.7345 6.71 1.97
2004 Apr 28 09 38 21.270 38.3687 21.7363 7.07 1.79
2004 Apr 28 10 23 47.400 38.3655 21.7310 6.97 1.63
2004 Apr 28 11 03 59.300 38.3648 21.7290 6.77 1.84
2004 Apr 28 17 13 30.470 38.3668 21.7240 6.92 1.51
2004 Apr 28 17 30 33.530 38.3607 21.7390 7.90 2.02
2004 Apr 30 02 43 0.710 38.3602 21.7423 6.53 1.87
2004 Apr 30 15 12 38.440 38.3632 21.7393 6.85 2.20
2004 May 01 08 01 34.310 38.3617 21.7245 6.74 2.03
2004 May 05 01 45 25.880 38.3285 21.7885 6.41 1.38
2004 May 05 14 30 6.240 38.3617 21.7408 6.83 1.07
2004 May 06 04 10 28.990 38.3700 21.7893 7.29 1.61
2004 May 09 10 15 45.980 38.3623 21.7888 6.77 2.31
2004 May 17 03 55 36.510 38.3918 21.7825 6.94 1.76
2004 May 22 22 44 50.990 38.2873 21.8197 13.67 2.43
2004 May 24 16 01 38.250 38.3745 21.7623 8.33 1.85
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Figure 3. Azimuthal coverage for station 8 plotted in a polar diagram with (a) the magnitude of the events and (b) the epicentral distances
in kilometers.
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capability in data clustering allows the analysis of multidi-
mensional, nonlinear and highly noisy geophysical data
(Klose, 2006).

Each neuron is described by an n-dimensional (n in
this case is the dimensionality of input data) weight vector,
wi, with all the neurons arranged on a low-dimensional
grid (Fig. 7). Every neuron of the network is connected
with every other node of the data input layer. The topology
of the map is determined by the interconnection of the neigh-
boring neurons that are equidistant in the map space. The
network represents a feed-forward structure with only one
computational layer formed by neurons (Carniel et al.,
2009). The suitability of the self-organization process is
ensured by initially using sufficient input vectors on the
input neurons even though only the winning neuron and
its neighbors adapt their connections.

In order to use the SOMs on our data, the HVSRs
computed for each station will constitute the input vectors.
Every input vector is introduced to the neural network
creating a localized region of activity. This “bubble” will
change its position and nature as the training process
unfolds.

The basic stages for the formation of the SOM are, in
brief, the following:

1. The values of the weight vectors, wi, of the neurons are
randomly initialized.

2. For every input vector, the value of the Euclidean
distance between the input vector and the node’s weight
vector on the map is calculated for every neuron:

jjxi � wjjj �
������������������������������������Xn
m�1

�xi;m � wj;m�2
s

; (2)

where xi � �xi;1xi;2…xi;n� is the input vector
i � 1; 2;…; n with n being the dimension of the input
space (in this case the number of the frequencies of
the HVSR), and wj � �wj;1wj;2…wj;n�T the weight vector
of a neuron j � 1; 2;…; m, where m represents the total
number of neurons.

3. After the values are calculated for all the nodes, the one
that produces the smallest distance is found. This node
will be the best matching unit (BMU).

4. The nodes in the neighborhood of the winning neuron are
updated and “pulled” closer to the input vector. The

Figure 4. Example of recordings of the vertical components for event 1 at 8 stations. The color version of this figure is available only in
the electronic edition.
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neighborhood function (hc�x�j;t) determines the connec-
tion between the neighboring neurons. A usual choice
is the Gaussian function. Also the neighborhood function
usually varies with the iteration number, t, because the

effective radius of the neighborhood function is set smal-
ler as the iterations go on.

5. The weight vectors of the neurons are modified in such a
way that improves the matching of the BMU neuron with

Figure 5. (a) Vertical components seismograms for 15 selected stations seismograms for event 72. The amplitudes of the records have
been normalized. Also the P and S arrivals are marked (gray vertical lines). (b) Section of processing window.
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Figure 6. HVSRs for stations (a) 30 and (b) 55 (thin lines in background); the SOM weighted average and the average HVSR as well
as the �1 standard deviation for the corresponding colors are overplotted. The color version of this figure is available only in the electronic
edition.
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the application of similar input patterns. This allows the
map training and the formation of data clusters. This
neuron adaptation process follows the function

wj�t� 1� � wj�t� � a�t�hc�x�j�t��xi�t� � wj�t��; (3)

where t is the iteration number and the learning rate
factor, 0 ≤ a�t� ≤ 1, that decreases monotonically with
the iteration t. The learning factor rate controls the updat-
ing of the weight vectors.

The results of the SOM can be visualized by a variety of
methods. The unified distance matrix (U-matrix) makes pos-
sible the 2D visualization of the SOMs by using properties of
the topological relations among neurons and is one of the
most frequently used. Each value of the U-matrix is calcu-
lated by taking the average distance measure between the
corresponding node and its closest adjacent neighbors.
Because of the way it is generated, the U-matrix can detect
topological relations among neurons and make inferences
about the structure of the input data.

Data Analysis

After processing the data as described in the previous
section, the band of frequencies of interest (0.5 up to
10 Hz) are exported to be used in the SOM process. Each
input vector xi for event i will be formed using all the fre-
quencies of the corresponding HVSR. The data (all the input
vectors) are entered in a Matlab-based implementation of the
SOM algorithms (Vesanto et al., 1999), and then the SOM is
trained. For every station, the corresponding SOM is created,
and each input vector is mapped to a specific node in the
output layer.

The next step is to calculate the U-matrix for every
station’s SOM separately in order to visualize the distances
between the neurons of the output layer. In this way, areas/
clusters can be located on the U-matrix where similar HVSRs
correspond to relatively smaller “distances.” As stated pre-
viously, an important advantage of the SOM technique is that
the similar input data are mapped into neighboring neurons.
Because of this property, the spectral ratios that have the
more persistent characteristics will be located in the same
or nearby neurons on the SOM. It is possible to locate the
more densely populated neurons of the SOM by calculating
the histogram of the number of input vectors that correspond
on each neuron. The most populated neuron is selected, and

the topographic errors of each input vector with this BMU are
calculated. Figure 8a presents the calculated U-matrix for
station 30 while Figure 8b shows the number of input data
points mapped on each neuron of the SOM. The dominant
node and its neighboring cluster can be seen in the upper
right corner.

Based on the above process and using the calculated to-
pographical errors between the input data and the U-matrix
cell with the highest data distribution (most persistent char-
acteristics), it is possible to calculate a weighted mean of
the spectra used that will be biased towards the more stable
characteristics. The classical form of the weight function is
written as

wi �
h�piP
n
j�1 h

�p
i

;

where n is the number of input spectra for each station,
h represents the topographic errors of the input from the
selected node, wi is the weight assigned to each input spectra
i, and p is an arbitrary positive real number called the power
parameter.

The value of p can change depending on how much
we want to amplify the HVSRs neighboring the BMU where
the majority of input vectors are mapped. In this case a value
of p � 2 was selected, but this could vary depending on
how much we want to emphasize the more persistent
characteristics.

The weighted average (Swmean
) then, is calculated using

the formula

Swmean
�

Xn
i�1

wiSi;

where Si is the ith input spectral ratio.
The SOM weighted average HVSR, when compared to

the average HVSR for a site with stable and similar ratios,
should not be very different. In the case of less stable average
HVSRs, the peaks are generally sharper; wide peaks might be
separated into two peaks or become sharper to one value, and
also, some minor peaks can be attenuated.

If the majority of the input vectors are distributed on one
node of the SOM or are closely located in neighboring nodes,
forming a cluster, most of the calculated HVSRs have some
persistent characteristics, and the final result is robust.
Because of this, we expect little difference between
weighted-average HVSR and average HVSR, but the common
features of the ratios are more pronounced. In this way there
is one result for each station from which the dominant
frequencies and spectral ratios are extracted.

The weighted-average HVSRs for each station are
plotted side by side with each other in order to have an initial
estimation of the differences and similarities of the sites as
well as to see the site response values. Figure 9a shows the
SOM weighted-average HVSRs for 16 selected stations. Care
should be taken that there is a sufficient number of inputFigure 7. Mapping of the input vector data to the neurons.
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Figure 8. (a) The U-matrix calculated for the events recorded in station 30 (smaller values indicate smaller distance between adjacent
neighbors) and (b) the number of input data points on each node of the SOM. The color version of this figure is available only in the electronic
edition.
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Figure 9. (a) Average HVSRs for 16 selected stations for frequencies between 0.5 and 20 Hz. (b) Comparison of average HVSR with the
SOM weighted average for the same stations. The color version of this figure is available only in the electronic edition.
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spectra. In this way a site-response map is prepared for the
region covered by the seismic stations. Figure 9b compares
the average HVSR for the same stations with the SOM
weighted average. Obviously, this is an additional indica-
tion/quality control of the HVSR result and its stability.

Synthetic Test

In order to assess the results of the proposed methodol-
ogy, a test with a synthetic data set is performed. Initially a
synthetic spectrum ratio (Fig. 10a) was created that had a
peak at 25 Hz representing the persistent feature of the ratios.
Based on that, 100 synthetic spectral ratios were generated.
Of those, 80 consisted of the initial with the addition of white
noise. Eighteen of them had in addition to noise, a second
peak at 35 Hz with equal ratio value, and finally, two had
in addition to noise, a second peak at 35 Hz as before and
a new dominant peak at 10 Hz that was 8 times the value of

the initial peak. Next, the average synthetic ratio was calcu-
lated (Fig. 10b).

The SOM algorithm was applied to the data set. The
U-matrix is calculated, and using the hit matrix, the most
populated node and its cluster is identified. (Fig. 11a,b)
The calculated weights are used in order to assess the SOM
weighted-average spectral ratio.

By comparing the two results, it can be seen that,
although in the average ratio the two secondary peaks still
exist even though attenuated, the SOM weighted average
manages to almost completely remove the effect of the peak
at 10 Hz and significantly lowers the peak at 35 Hz.

Results

The calculated HVSR amplifications corresponding to
all 95 events for all the station sites in Figure 4 are depicted
in Figure 12.
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Figure 10. (a) The initial synthetic spectrum. (b) The average spectrum is plotted over the SOM weighted-average spectrum. The color
version of this figure is available only in the electronic edition.
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Figure 11. (a) The U-matrix calculated for the synthetic test; (b) the number of input data that is mapped on each node of the SOM. The
color version of this figure is available only in the electronic edition.
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It can be seen that the dominant frequencies are lower
on the Rio side of the strait, where the soft recent sediments
are predominant. They range mostly from 1–3 Hz with the
average mean amplification factor for soft sediments varying
from 0.7 up to 3.5. On the Antirrio site of the Strait, there
seems to be a wider range of dominant frequencies that are
also generally higher. In general, with the exception of several
sites, the stations have predominant frequencies between 1
and 7 Hz with the mean amplification factors ranging mostly
from 1 to 3. On the Antirrio side, it seems that the most recent
sediments have lower frequencies increasing slightly towards
the Pleistocene sediments, but even taking into account
stations within the same geological surface formations, the
results are more heterogeneous than on the Rio side.

Refering to the results of SOM weighted averaging, the
calculated ratios are almost unaffected at the sites where the
ratios are stable and a sufficient number of events are
recorded (at least 5–20 depending on the case). The sites
mostly affected are those with few recorded events, charac-
terized by not-so-stable ratios or contained in some ratios
with very large values. This method can be a tool for eval-
uating the stability and quality of the calculated ratios.

The properties of the SOMs can also be used to inves-
tigate the clustering of the resulting HVSRs. For some

HVSRs, those corresponding to stations where the peak fre-
quencies are not clearly distinguished, clustering of the
HVSR can be more reliable. For this reason, the final HVSRs
are used again to calculate a new SOM to define similar
behavior clusters using the k-means for the clustering.
The Davies–Bouldin index (Davies and Bouldin, 1979) is
calculated based on the average maximal distance of each
cluster to the others and is used as a measure of the cluster
separation. Based on this, for this data set, nine HVSR clus-
ters were formed (Fig. 13), and the cluster number of the
corresponding stations was plotted on the map of the
area. (Fig. 14).

In the city of Antirrio and the immediate vicinity,
the relatively flat HVSR clusters 5 and 7 are situated in the
Pleistocene deposits or very close to their outcrop. In the Rio
area, there are a number of stations that have been classified
to cluster 7, but the geological data currently at our disposal
are not enough to confirm this zonation.

Conclusion

A new method for quality control and improvement of
the results of the HVSR method for weak events has been
applied. By using the SOMs, it is possible to have an indica-

Figure 12. The HVSRs (circle radii) and the predominant frequencies (color scale) for all the instrumented positions. The color version of
this figure is available only in the electronic edition.
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Figure 13. Plot of the HVSRs separated by the 9 clusters.

Figure 14. Map of the corresponding clusters. The color version of this figure is available only in the electronic edition.
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tion of the similarity between the HVSRs of all the events for
every station. Also, using the topographic errors, it is possi-
ble to calculate the average HVSR, giving larger emphasis to
the spectral ratios with the more persistent characteristics.
Also, the SOM algorithm can be used in automating the
separation of areas with HVSRs with similar behavior.

The method has been applied to the Rio-Antirrio region
for interpreting earthquake data collected on a dense grid of
70 urban sites. The method has allowed us to better evaluate
the stability of the calculated ratios and improve our knowl-
edge of the local seismic response. However, the empirical
transfer functions estimated in this study have to be modified
to include nonlinear effects in order to extend our results to
strong ground shaking.

Data and Resources

Seismograms used in this study were collected and
provided by Landtech Enterprises SA and are proprietary.
They cannot, currently, be released to the public.
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